Finite nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian
We give here a complete classification of the title groups (Theorem A).
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
14 January 2011
|
| In: |
Archiv der Mathematik
Year: 2011, Jahrgang: 96, Heft: 2, Pages: 105-107 |
| ISSN: | 1420-8938 |
| DOI: | 10.1007/s00013-010-0213-2 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00013-010-0213-2 |
| Verfasserangaben: | Zvonimir Janko |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1809041317 | ||
| 003 | DE-627 | ||
| 005 | 20220820213044.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220704s2011 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00013-010-0213-2 |2 doi | |
| 035 | |a (DE-627)1809041317 | ||
| 035 | |a (DE-599)KXP1809041317 | ||
| 035 | |a (OCoLC)1341463450 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Janko, Zvonimir |d 1932- |e VerfasserIn |0 (DE-588)137026056 |0 (DE-627)622563041 |0 (DE-576)320900258 |4 aut | |
| 245 | 1 | 0 | |a Finite nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian |c Zvonimir Janko |
| 264 | 1 | |c 14 January 2011 | |
| 300 | |a 3 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 04.07.2022 | ||
| 520 | |a We give here a complete classification of the title groups (Theorem A). | ||
| 650 | 4 | |a 20D15 | |
| 650 | 4 | |a Frattini subgroups | |
| 650 | 4 | |a Metacyclic p-groups | |
| 650 | 4 | |a Minimal nonabelian p-groups | |
| 773 | 0 | 8 | |i Enthalten in |t Archiv der Mathematik |d Berlin : Springer, 1948 |g 96(2011), 2, Seite 105-107 |h Online-Ressource |w (DE-627)253389976 |w (DE-600)1458441-4 |w (DE-576)07228322X |x 1420-8938 |7 nnas |a Finite nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian |
| 773 | 1 | 8 | |g volume:96 |g year:2011 |g number:2 |g pages:105-107 |g extent:3 |a Finite nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00013-010-0213-2 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220704 | ||
| 993 | |a Article | ||
| 994 | |a 2011 | ||
| 998 | |g 137026056 |a Janko, Zvonimir |m 137026056:Janko, Zvonimir |d 110000 |e 110000PJ137026056 |k 0/110000/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1809041317 |e 4160949037 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"doi":["10.1007/s00013-010-0213-2"],"eki":["1809041317"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"14 January 2011"}],"name":{"displayForm":["Zvonimir Janko"]},"relHost":[{"title":[{"title_sort":"Archiv der Mathematik","title":"Archiv der Mathematik","subtitle":"ADM = Archives mathématiques = Archives of mathematics"}],"note":["Gesehen am 01.12.05"],"disp":"Finite nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelianArchiv der Mathematik","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"253389976","language":["eng"],"pubHistory":["1.1948/49 -"],"titleTranslated":[{"translated":"Archives mathématiques"},{"translated":"Archives of mathematics"}],"titleAlt":[{"title":"ADM"},{"title":"Archives mathématiques"},{"title":"Archives of mathematics"}],"part":{"extent":"3","text":"96(2011), 2, Seite 105-107","volume":"96","issue":"2","pages":"105-107","year":"2011"},"origin":[{"dateIssuedKey":"1948","publisher":"Springer ; Birkhäuser","dateIssuedDisp":"1948-","publisherPlace":"Berlin ; Heidelberg ; Basel [u.a.] ; Berlin"}],"id":{"issn":["1420-8938"],"zdb":["1458441-4"],"eki":["253389976"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"3 S."}],"title":[{"title_sort":"Finite nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian","title":"Finite nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian"}],"person":[{"display":"Janko, Zvonimir","roleDisplay":"VerfasserIn","role":"aut","family":"Janko","given":"Zvonimir"}],"recId":"1809041317","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 04.07.2022"]} | ||
| SRT | |a JANKOZVONIFINITENONA1420 | ||