Irrelevant operators in the two-dimensional Ising model

By using conformal-field theory, we classify the possible irrelevant operators for the Ising model with nearest-neighbour interactions on the square and triangular lattices. We analyse the existing results for the free energy and its derivatives and for the correlation length, showing that they are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Caselle, M. (VerfasserIn) , Hasenbusch, Martin (VerfasserIn) , Pelissetto, Andrea (VerfasserIn) , Vicari, Ettore (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 May 2002
In: Journal of physics. A, Mathematical and general
Year: 2002, Jahrgang: 35, Heft: 23, Pages: 4861-4888
ISSN:1361-6447
DOI:10.1088/0305-4470/35/23/305
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/0305-4470/35/23/305
Volltext
Verfasserangaben:Michele Caselle, Martin Hasenbusch, Andrea Pelissetto and Ettore Vicari
Beschreibung
Zusammenfassung:By using conformal-field theory, we classify the possible irrelevant operators for the Ising model with nearest-neighbour interactions on the square and triangular lattices. We analyse the existing results for the free energy and its derivatives and for the correlation length, showing that they are in agreement with the conformal-field theory predictions. Moreover, these results imply that the nonlinear scaling field of the TT̄ operator, where T is the energy-momentum tensor, vanishes at the critical point. Several other peculiar cancellations are explained in terms of a number of general conjectures. We show that all existing results on the square and triangular lattices are consistent with the assumption that only nonzero-spin operators are present.
Beschreibung:Gesehen am 08.07.2022
Beschreibung:Online Resource
ISSN:1361-6447
DOI:10.1088/0305-4470/35/23/305