Decoherence in an interacting quantum field theory: Thermal case

We study the decoherence of a renormalized quantum field theoretical system. We consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. Using out-of-equilibrium field theory techniques at finite temperatures, we show th...

Full description

Saved in:
Bibliographic Details
Main Authors: Koksma, Jurjen F. (Author) , Prokopec, Tomislav (Author) , Schmidt, Michael G. (Author)
Format: Article (Journal)
Language:English
Published: 11 April 2011
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 2011, Volume: 83, Issue: 8, Pages: 1-31
ISSN:1550-2368
DOI:10.1103/PhysRevD.83.085011
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.83.085011
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.83.085011
Get full text
Author Notes:Jurjen F. Koksma, Tomislav Prokopec, Michael G. Schmidt
Description
Summary:We study the decoherence of a renormalized quantum field theoretical system. We consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. Using out-of-equilibrium field theory techniques at finite temperatures, we show that the Gaussian von Neumann entropy for a pure quantum state asymptotes to the interacting thermal entropy. The decoherence rate can be well described by the single particle decay rate in our model. Connecting to electroweak baryogenesis scenarios, we moreover study the effects on the entropy of a changing mass of the system field. Finally, we compare our correlator approach to existing approaches to decoherence in the simple quantum mechanical analogue of our field theoretical model. The entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
Item Description:Gesehen am 06.07.2022
Physical Description:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.83.085011