Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography

The accurate spatial information of snow cover is useful for understanding the impact of global warming, and it is of high significance for hydrological disaster prediction, water resources management, and climate change research. The Normalized Difference Snow Index (NDSI) based approach has been u...

Full description

Saved in:
Bibliographic Details
Main Authors: Luo, Jianfeng (Author) , Dong, Chunyu (Author) , Lin, Kairong (Author) , Chen, Xiaohong (Author) , Zhao, Liqiang (Author) , Menzel, Lucas (Author)
Format: Article (Journal)
Language:English
Published: 5 April 2022
In: Remote sensing of environment
Year: 2022, Volume: 275, Pages: 1-14
ISSN:1879-0704
DOI:10.1016/j.rse.2022.113017
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.rse.2022.113017
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0034425722001316
Get full text
Author Notes:Jianfeng Luo, Chunyu Dong, Kairong Lin, Xiaohong Chen, Liqiang Zhao, Lucas Menzel

MARC

LEADER 00000caa a2200000 c 4500
001 1809451973
003 DE-627
005 20220820215656.0
007 cr uuu---uuuuu
008 220707s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.rse.2022.113017  |2 doi 
035 |a (DE-627)1809451973 
035 |a (DE-599)KXP1809451973 
035 |a (OCoLC)1341463558 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Luo, Jianfeng  |e VerfasserIn  |0 (DE-588)1262029422  |0 (DE-627)1809452872  |4 aut 
245 1 0 |a Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography  |c Jianfeng Luo, Chunyu Dong, Kairong Lin, Xiaohong Chen, Liqiang Zhao, Lucas Menzel 
264 1 |c 5 April 2022 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.07.2022 
520 |a The accurate spatial information of snow cover is useful for understanding the impact of global warming, and it is of high significance for hydrological disaster prediction, water resources management, and climate change research. The Normalized Difference Snow Index (NDSI) based approach has been used extensively around the world for mapping snow, and they displayed high accuracy in open areas. However, capturing snow cover in forests remains problematic due to the obstruction effects of the forest canopy, which causes the snow cover area to be seriously underestimated. In this paper, we present a new algorithm based on machine learning (ML) technology to improve the accuracy of binary snow cover (BSC) mapping in forests, using the remotely sensed surface reflectance and ground truth data. A time-lapse photography network with a two-hour resolution was established in the eastern Qilian Mountains in northwestern China to obtain the ground truth data both in forests and open areas. We trained Random Forests (RF) with the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data from bands 1-7 to generate BSC results (RF-BSC). Then we evaluated RF-BSC and the NDSI-derived BSC maps with three different NDSI thresholds (i.e., 0.10, 0.29, and 0.40) against ground-truth data. The results indicate that the proposed algorithm has a high performance in forest BSC mapping in this area, compared to the NDSI-threshold approach. The RF-BSC can retrieve 67% of all real forest snow pixels, while the NDSI-based BSC can only detect 8-14%. We also find that the performance of the algorithm seems to be sensitive to changes in solar illumination conditions and forest coverage. This study suggests that machine learning with the fusion of optical remote sensing and ground-based observations is an effective approach for improving the accuracy of forest snow cover mapping at regional scales. 
650 4 |a Forest snow mapping 
650 4 |a MODIS 
650 4 |a NDSI 
650 4 |a Random forest 
650 4 |a Time-lapse photography 
700 1 |a Dong, Chunyu  |e VerfasserIn  |4 aut 
700 1 |a Lin, Kairong  |e VerfasserIn  |4 aut 
700 1 |a Chen, Xiaohong  |e VerfasserIn  |4 aut 
700 1 |a Zhao, Liqiang  |e VerfasserIn  |4 aut 
700 1 |a Menzel, Lucas  |e VerfasserIn  |0 (DE-588)1019977698  |0 (DE-627)691067732  |0 (DE-576)168926954  |4 aut 
773 0 8 |i Enthalten in  |t Remote sensing of environment  |d Amsterdam [u.a.] : Elsevier Science, 1969  |g 275(2022), Artikel-ID 113017, Seite 1-14  |h Online-Ressource  |w (DE-627)306591324  |w (DE-600)1498713-2  |w (DE-576)098330268  |x 1879-0704  |7 nnas  |a Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography 
773 1 8 |g volume:275  |g year:2022  |g elocationid:113017  |g pages:1-14  |g extent:14  |a Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography 
856 4 0 |u https://doi.org/10.1016/j.rse.2022.113017  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0034425722001316  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220707 
993 |a Article 
994 |a 2022 
998 |g 1019977698  |a Menzel, Lucas  |m 1019977698:Menzel, Lucas  |d 120000  |d 120700  |e 120000PM1019977698  |e 120700PM1019977698  |k 0/120000/  |k 1/120000/120700/  |p 6  |y j 
999 |a KXP-PPN1809451973  |e 4162304149 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title_sort":"Remote sensing of environment","subtitle":"an interdisciplinary journal","title":"Remote sensing of environment"}],"recId":"306591324","language":["eng"],"note":["Gesehen am 11.04.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photographyRemote sensing of environment","part":{"extent":"14","text":"275(2022), Artikel-ID 113017, Seite 1-14","volume":"275","pages":"1-14","year":"2022"},"pubHistory":["1.1969/70 - 115.2011; Vol. 116.2012 -"],"id":{"zdb":["1498713-2"],"eki":["306591324"],"issn":["1879-0704"]},"origin":[{"dateIssuedDisp":"1969-","publisher":"Elsevier Science","dateIssuedKey":"1969","publisherPlace":"Amsterdam [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"14 S."}],"id":{"eki":["1809451973"],"doi":["10.1016/j.rse.2022.113017"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"5 April 2022"}],"name":{"displayForm":["Jianfeng Luo, Chunyu Dong, Kairong Lin, Xiaohong Chen, Liqiang Zhao, Lucas Menzel"]},"language":["eng"],"recId":"1809451973","note":["Gesehen am 07.07.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography","title_sort":"Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography"}],"person":[{"given":"Jianfeng","family":"Luo","role":"aut","roleDisplay":"VerfasserIn","display":"Luo, Jianfeng"},{"family":"Dong","given":"Chunyu","display":"Dong, Chunyu","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Lin, Kairong","given":"Kairong","family":"Lin"},{"given":"Xiaohong","family":"Chen","role":"aut","roleDisplay":"VerfasserIn","display":"Chen, Xiaohong"},{"family":"Zhao","given":"Liqiang","roleDisplay":"VerfasserIn","display":"Zhao, Liqiang","role":"aut"},{"given":"Lucas","family":"Menzel","role":"aut","roleDisplay":"VerfasserIn","display":"Menzel, Lucas"}]} 
SRT |a LUOJIANFENMAPPINGSNO5202