Symplectically convex and symplectically star-shaped curves: a variational problem

In this article we propose a generalization of the 2-dimensional notions of convexity resp. being star-shaped to symplectic vector spaces. We call such curves symplectically convex resp. symplectically star-shaped. After presenting some basic results we study a family of variational problems for sym...

Full description

Saved in:
Bibliographic Details
Main Authors: Albers, Peter (Author) , Tabachnikov, Serge (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2020
In: Arxiv
Year: 2020, Pages: 1-23
DOI:10.48550/arXiv.2012.14797
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2012.14797
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2012.14797
Get full text
Author Notes:Peter Albers, Serge Tabachnikov

MARC

LEADER 00000caa a2200000 c 4500
001 1809929326
003 DE-627
005 20220820222011.0
007 cr uuu---uuuuu
008 220712s2020 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2012.14797  |2 doi 
035 |a (DE-627)1809929326 
035 |a (DE-599)KXP1809929326 
035 |a (OCoLC)1341463740 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 0 |a Symplectically convex and symplectically star-shaped curves  |b a variational problem  |c Peter Albers, Serge Tabachnikov 
264 1 |c 2020 
300 |a 23 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Identifizierung der Ressource nach: May 28, 2021 
500 |a Gesehen am 10.08.2022 
520 |a In this article we propose a generalization of the 2-dimensional notions of convexity resp. being star-shaped to symplectic vector spaces. We call such curves symplectically convex resp. symplectically star-shaped. After presenting some basic results we study a family of variational problems for symplectically convex and symplectically star-shaped curves which is motivated by the affine isoperimetric inequality. These variational problems can be reduced back to two dimensions. For a range of the family parameter extremal points of the variational problem are rigid: they are multiply traversed conics. For all family parameters we determine when non-trivial first and second order deformations of conics exist. In the last section we present some conjectures and questions and two galleries created with the help of a Mathematica applet by Gil Bor. 
650 4 |a Mathematics - Differential Geometry 
650 4 |a Mathematics - Symplectic Geometry 
700 1 |a Tabachnikov, Serge  |d 1956-  |e VerfasserIn  |0 (DE-588)133854604  |0 (DE-627)655098607  |0 (DE-576)176598995  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2020), Artikel-ID 2012.14797, Seite 1-23  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Symplectically convex and symplectically star-shaped curves a variational problem 
773 1 8 |g year:2020  |g elocationid:2012.14797  |g pages:1-23  |g extent:23  |a Symplectically convex and symplectically star-shaped curves a variational problem 
856 4 0 |u https://doi.org/10.48550/arXiv.2012.14797  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2012.14797  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220712 
993 |a Article 
994 |a 2020 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PA129903817  |e 110100PA129903817  |e 110000PA129903817  |e 110400PA129903817  |e 700000PA129903817  |e 728500PA129903817  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1809929326  |e 4164360895 
BIB |a Y 
JSO |a {"language":["eng"],"recId":"1809929326","note":["Identifizierung der Ressource nach: May 28, 2021","Gesehen am 10.08.2022"],"type":{"bibl":"chapter","media":"Online-Ressource"},"title":[{"title":"Symplectically convex and symplectically star-shaped curves","subtitle":"a variational problem","title_sort":"Symplectically convex and symplectically star-shaped curves"}],"person":[{"family":"Albers","given":"Peter","roleDisplay":"VerfasserIn","display":"Albers, Peter","role":"aut"},{"family":"Tabachnikov","given":"Serge","display":"Tabachnikov, Serge","roleDisplay":"VerfasserIn","role":"aut"}],"relHost":[{"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"recId":"509006531","language":["eng"],"note":["Gesehen am 28.05.2024"],"disp":"Symplectically convex and symplectically star-shaped curves a variational problemArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"text":"(2020), Artikel-ID 2012.14797, Seite 1-23","extent":"23","year":"2020","pages":"1-23"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"23 S."}],"id":{"doi":["10.48550/arXiv.2012.14797"],"eki":["1809929326"]},"origin":[{"dateIssuedDisp":"2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Peter Albers, Serge Tabachnikov"]}} 
SRT |a ALBERSPETESYMPLECTIC2020