Symplectically convex and symplectically star-shaped curves: a variational problem
In this article we propose a generalization of the 2-dimensional notions of convexity resp. being star-shaped to symplectic vector spaces. We call such curves symplectically convex resp. symplectically star-shaped. After presenting some basic results we study a family of variational problems for sym...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2020
|
| In: |
Arxiv
Year: 2020, Pages: 1-23 |
| DOI: | 10.48550/arXiv.2012.14797 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2012.14797 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2012.14797 |
| Author Notes: | Peter Albers, Serge Tabachnikov |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1809929326 | ||
| 003 | DE-627 | ||
| 005 | 20220820222011.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220712s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2012.14797 |2 doi | |
| 035 | |a (DE-627)1809929326 | ||
| 035 | |a (DE-599)KXP1809929326 | ||
| 035 | |a (OCoLC)1341463740 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Symplectically convex and symplectically star-shaped curves |b a variational problem |c Peter Albers, Serge Tabachnikov |
| 264 | 1 | |c 2020 | |
| 300 | |a 23 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Identifizierung der Ressource nach: May 28, 2021 | ||
| 500 | |a Gesehen am 10.08.2022 | ||
| 520 | |a In this article we propose a generalization of the 2-dimensional notions of convexity resp. being star-shaped to symplectic vector spaces. We call such curves symplectically convex resp. symplectically star-shaped. After presenting some basic results we study a family of variational problems for symplectically convex and symplectically star-shaped curves which is motivated by the affine isoperimetric inequality. These variational problems can be reduced back to two dimensions. For a range of the family parameter extremal points of the variational problem are rigid: they are multiply traversed conics. For all family parameters we determine when non-trivial first and second order deformations of conics exist. In the last section we present some conjectures and questions and two galleries created with the help of a Mathematica applet by Gil Bor. | ||
| 650 | 4 | |a Mathematics - Differential Geometry | |
| 650 | 4 | |a Mathematics - Symplectic Geometry | |
| 700 | 1 | |a Tabachnikov, Serge |d 1956- |e VerfasserIn |0 (DE-588)133854604 |0 (DE-627)655098607 |0 (DE-576)176598995 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2020), Artikel-ID 2012.14797, Seite 1-23 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Symplectically convex and symplectically star-shaped curves a variational problem |
| 773 | 1 | 8 | |g year:2020 |g elocationid:2012.14797 |g pages:1-23 |g extent:23 |a Symplectically convex and symplectically star-shaped curves a variational problem |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2012.14797 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2012.14797 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220712 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PA129903817 |e 110100PA129903817 |e 110000PA129903817 |e 110400PA129903817 |e 700000PA129903817 |e 728500PA129903817 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1809929326 |e 4164360895 | ||
| BIB | |a Y | ||
| JSO | |a {"language":["eng"],"recId":"1809929326","note":["Identifizierung der Ressource nach: May 28, 2021","Gesehen am 10.08.2022"],"type":{"bibl":"chapter","media":"Online-Ressource"},"title":[{"title":"Symplectically convex and symplectically star-shaped curves","subtitle":"a variational problem","title_sort":"Symplectically convex and symplectically star-shaped curves"}],"person":[{"family":"Albers","given":"Peter","roleDisplay":"VerfasserIn","display":"Albers, Peter","role":"aut"},{"family":"Tabachnikov","given":"Serge","display":"Tabachnikov, Serge","roleDisplay":"VerfasserIn","role":"aut"}],"relHost":[{"id":{"zdb":["2225896-6"],"eki":["509006531"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"recId":"509006531","language":["eng"],"note":["Gesehen am 28.05.2024"],"disp":"Symplectically convex and symplectically star-shaped curves a variational problemArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"text":"(2020), Artikel-ID 2012.14797, Seite 1-23","extent":"23","year":"2020","pages":"1-23"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"23 S."}],"id":{"doi":["10.48550/arXiv.2012.14797"],"eki":["1809929326"]},"origin":[{"dateIssuedDisp":"2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Peter Albers, Serge Tabachnikov"]}} | ||
| SRT | |a ALBERSPETESYMPLECTIC2020 | ||