Periodic delay orbits and the polyfold implicit function theorem
We consider differential delay equations of the form $\partial_tx(t) = X_{t}(x(t - \tau))$ in $\mathbb{R}^n$, where $(X_t)_{t\in S^1}$ is a time-dependent family of smooth vector fields on $\mathbb{R}^n$ and $\tau$ is a delay parameter. If there is a (suitably non-degenerate) periodic solution $x_0$...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
30 Nov 2020
|
| In: |
Arxiv
Year: 2020, Pages: 1-20 |
| DOI: | 10.48550/arXiv.2011.14828 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2011.14828 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2011.14828 |
| Verfasserangaben: | Peter Albers, Irene Seifert |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1809929725 | ||
| 003 | DE-627 | ||
| 005 | 20220820222016.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220712s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2011.14828 |2 doi | |
| 035 | |a (DE-627)1809929725 | ||
| 035 | |a (DE-599)KXP1809929725 | ||
| 035 | |a (OCoLC)1341463883 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Periodic delay orbits and the polyfold implicit function theorem |c Peter Albers, Irene Seifert |
| 264 | 1 | |c 30 Nov 2020 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.07.2022 | ||
| 520 | |a We consider differential delay equations of the form $\partial_tx(t) = X_{t}(x(t - \tau))$ in $\mathbb{R}^n$, where $(X_t)_{t\in S^1}$ is a time-dependent family of smooth vector fields on $\mathbb{R}^n$ and $\tau$ is a delay parameter. If there is a (suitably non-degenerate) periodic solution $x_0$ of this equation for $\tau=0$, that is without delay, there are good reasons to expect existence of a family of periodic solutions for all sufficiently small delays, smoothly parametrized by delay. However, it seems difficult to prove this using the classical implicit function theorem, since the equation above is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold implicit function theorem by Hofer-Wysocki-Zehnder [HWZ09, HWZ17] to overcome this problem in a natural setup. | ||
| 650 | 4 | |a 34K13, 37C27, 47J07 | |
| 650 | 4 | |a Mathematics - Dynamical Systems | |
| 650 | 4 | |a Mathematics - Symplectic Geometry | |
| 700 | 1 | |a Seifert, Irene |d 1993- |e VerfasserIn |0 (DE-588)1155950178 |0 (DE-627)1018508201 |0 (DE-576)501954945 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2020), Artikel-ID 2011.14828, Seite 1-20 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Periodic delay orbits and the polyfold implicit function theorem |
| 773 | 1 | 8 | |g year:2020 |g elocationid:2011.14828 |g pages:1-20 |g extent:20 |a Periodic delay orbits and the polyfold implicit function theorem |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2011.14828 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2011.14828 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220712 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1155950178 |a Seifert, Irene |m 1155950178:Seifert, Irene |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PS1155950178 |e 110100PS1155950178 |e 110000PS1155950178 |e 110400PS1155950178 |e 700000PS1155950178 |e 728500PS1155950178 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 2 |y j | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PA129903817 |e 110100PA129903817 |e 110000PA129903817 |e 110400PA129903817 |e 700000PA129903817 |e 728500PA129903817 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1809929725 |e 4164361786 | ||
| BIB | |a Y | ||
| JSO | |a {"physDesc":[{"extent":"20 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"20","text":"(2020), Artikel-ID 2011.14828, Seite 1-20","pages":"1-20","year":"2020"},"note":["Gesehen am 28.05.2024"],"disp":"Periodic delay orbits and the polyfold implicit function theoremArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"language":["eng"],"recId":"509006531","title":[{"title_sort":"Arxiv","title":"Arxiv"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"30 Nov 2020"}],"id":{"doi":["10.48550/arXiv.2011.14828"],"eki":["1809929725"]},"name":{"displayForm":["Peter Albers, Irene Seifert"]},"note":["Gesehen am 12.07.2022"],"type":{"media":"Online-Ressource","bibl":"chapter"},"recId":"1809929725","language":["eng"],"title":[{"title_sort":"Periodic delay orbits and the polyfold implicit function theorem","title":"Periodic delay orbits and the polyfold implicit function theorem"}],"person":[{"given":"Peter","family":"Albers","role":"aut","display":"Albers, Peter","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Seifert, Irene","given":"Irene","family":"Seifert"}]} | ||
| SRT | |a ALBERSPETEPERIODICDE3020 | ||