Periodic delay orbits and the polyfold implicit function theorem

We consider differential delay equations of the form $\partial_tx(t) = X_{t}(x(t - \tau))$ in $\mathbb{R}^n$, where $(X_t)_{t\in S^1}$ is a time-dependent family of smooth vector fields on $\mathbb{R}^n$ and $\tau$ is a delay parameter. If there is a (suitably non-degenerate) periodic solution $x_0$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Seifert, Irene (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 30 Nov 2020
In: Arxiv
Year: 2020, Pages: 1-20
DOI:10.48550/arXiv.2011.14828
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2011.14828
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2011.14828
Volltext
Verfasserangaben:Peter Albers, Irene Seifert

MARC

LEADER 00000caa a2200000 c 4500
001 1809929725
003 DE-627
005 20220820222016.0
007 cr uuu---uuuuu
008 220712s2020 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2011.14828  |2 doi 
035 |a (DE-627)1809929725 
035 |a (DE-599)KXP1809929725 
035 |a (OCoLC)1341463883 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 0 |a Periodic delay orbits and the polyfold implicit function theorem  |c Peter Albers, Irene Seifert 
264 1 |c 30 Nov 2020 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.07.2022 
520 |a We consider differential delay equations of the form $\partial_tx(t) = X_{t}(x(t - \tau))$ in $\mathbb{R}^n$, where $(X_t)_{t\in S^1}$ is a time-dependent family of smooth vector fields on $\mathbb{R}^n$ and $\tau$ is a delay parameter. If there is a (suitably non-degenerate) periodic solution $x_0$ of this equation for $\tau=0$, that is without delay, there are good reasons to expect existence of a family of periodic solutions for all sufficiently small delays, smoothly parametrized by delay. However, it seems difficult to prove this using the classical implicit function theorem, since the equation above is not smooth in the delay parameter. In this paper, we show how to use the M-polyfold implicit function theorem by Hofer-Wysocki-Zehnder [HWZ09, HWZ17] to overcome this problem in a natural setup. 
650 4 |a 34K13, 37C27, 47J07 
650 4 |a Mathematics - Dynamical Systems 
650 4 |a Mathematics - Symplectic Geometry 
700 1 |a Seifert, Irene  |d 1993-  |e VerfasserIn  |0 (DE-588)1155950178  |0 (DE-627)1018508201  |0 (DE-576)501954945  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2020), Artikel-ID 2011.14828, Seite 1-20  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Periodic delay orbits and the polyfold implicit function theorem 
773 1 8 |g year:2020  |g elocationid:2011.14828  |g pages:1-20  |g extent:20  |a Periodic delay orbits and the polyfold implicit function theorem 
856 4 0 |u https://doi.org/10.48550/arXiv.2011.14828  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2011.14828  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220712 
993 |a Article 
994 |a 2020 
998 |g 1155950178  |a Seifert, Irene  |m 1155950178:Seifert, Irene  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PS1155950178  |e 110100PS1155950178  |e 110000PS1155950178  |e 110400PS1155950178  |e 700000PS1155950178  |e 728500PS1155950178  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PA129903817  |e 110100PA129903817  |e 110000PA129903817  |e 110400PA129903817  |e 700000PA129903817  |e 728500PA129903817  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1809929725  |e 4164361786 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"20 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"extent":"20","text":"(2020), Artikel-ID 2011.14828, Seite 1-20","pages":"1-20","year":"2020"},"note":["Gesehen am 28.05.2024"],"disp":"Periodic delay orbits and the polyfold implicit function theoremArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"language":["eng"],"recId":"509006531","title":[{"title_sort":"Arxiv","title":"Arxiv"}]}],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"30 Nov 2020"}],"id":{"doi":["10.48550/arXiv.2011.14828"],"eki":["1809929725"]},"name":{"displayForm":["Peter Albers, Irene Seifert"]},"note":["Gesehen am 12.07.2022"],"type":{"media":"Online-Ressource","bibl":"chapter"},"recId":"1809929725","language":["eng"],"title":[{"title_sort":"Periodic delay orbits and the polyfold implicit function theorem","title":"Periodic delay orbits and the polyfold implicit function theorem"}],"person":[{"given":"Peter","family":"Albers","role":"aut","display":"Albers, Peter","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Seifert, Irene","given":"Irene","family":"Seifert"}]} 
SRT |a ALBERSPETEPERIODICDE3020