Variational Monte Carlo approach to partial differential equations with neural networks
The accurate numerical solution of partial differential equations is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving partial differe...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
June 7, 2022
|
| In: |
Arxiv
Year: 2022, Pages: 1-9 |
| DOI: | 10.48550/arXiv.2206.01927 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2206.01927 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2206.01927 |
| Verfasserangaben: | Moritz Reh and Martin Gärttner |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810069947 | ||
| 003 | DE-627 | ||
| 005 | 20220820222322.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220713s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2206.01927 |2 doi | |
| 035 | |a (DE-627)1810069947 | ||
| 035 | |a (DE-599)KXP1810069947 | ||
| 035 | |a (OCoLC)1341463927 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Reh, Moritz |d 1995- |e VerfasserIn |0 (DE-588)1247844358 |0 (DE-627)1782431616 |4 aut | |
| 245 | 1 | 0 | |a Variational Monte Carlo approach to partial differential equations with neural networks |c Moritz Reh and Martin Gärttner |
| 264 | 1 | |c June 7, 2022 | |
| 300 | |a 9 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 13.07.2022 | ||
| 520 | |a The accurate numerical solution of partial differential equations is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving partial differential equations governing the evolution of high dimensional probability distributions. Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters, which are adapted dynamically during the evolution to optimally reflect the dynamics of the density. For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions in regimes inaccessible to traditional computational approaches. | ||
| 650 | 4 | |a Computer Science - Machine Learning | |
| 650 | 4 | |a Mathematics - Dynamical Systems | |
| 650 | 4 | |a Mathematics - Numerical Analysis | |
| 650 | 4 | |a Physics - Computational Physics | |
| 700 | 1 | |a Gärttner, Martin |d 1985- |e VerfasserIn |0 (DE-588)1047469529 |0 (DE-627)778426076 |0 (DE-576)401083527 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2022), Artikel-ID 2206.01927, Seite 1-9 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Variational Monte Carlo approach to partial differential equations with neural networks |
| 773 | 1 | 8 | |g year:2022 |g elocationid:2206.01927 |g pages:1-9 |g extent:9 |a Variational Monte Carlo approach to partial differential equations with neural networks |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2206.01927 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2206.01927 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220713 | ||
| 993 | |a Article | ||
| 998 | |g 1047469529 |a Gärttner, Martin |m 1047469529:Gärttner, Martin |d 130000 |d 130000 |d 130200 |d 700000 |d 728500 |e 130000PG1047469529 |e 130000PG1047469529 |e 130200PG1047469529 |e 700000PG1047469529 |e 728500PG1047469529 |k 0/130000/ |k 0/130000/ |k 1/130000/130200/ |k 0/700000/ |k 1/700000/728500/ |p 2 |y j | ||
| 998 | |g 1247844358 |a Reh, Moritz |m 1247844358:Reh, Moritz |d 130000 |d 130700 |d 700000 |d 728500 |e 130000PR1247844358 |e 130700PR1247844358 |e 700000PR1247844358 |e 728500PR1247844358 |k 0/130000/ |k 1/130000/130700/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1810069947 |e 4164797231 | ||
| BIB | |a Y | ||
| JSO | |a {"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"June 7, 2022"}],"relHost":[{"disp":"Variational Monte Carlo approach to partial differential equations with neural networksArxiv","pubHistory":["1991 -"],"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991"}],"part":{"year":"2022","extent":"9","text":"(2022), Artikel-ID 2206.01927, Seite 1-9","pages":"1-9"},"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"recId":"509006531","title":[{"title_sort":"Arxiv","title":"Arxiv"}],"note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"}}],"name":{"displayForm":["Moritz Reh and Martin Gärttner"]},"physDesc":[{"extent":"9 S."}],"language":["eng"],"id":{"eki":["1810069947"],"doi":["10.48550/arXiv.2206.01927"]},"recId":"1810069947","title":[{"title_sort":"Variational Monte Carlo approach to partial differential equations with neural networks","title":"Variational Monte Carlo approach to partial differential equations with neural networks"}],"person":[{"given":"Moritz","role":"aut","family":"Reh","display":"Reh, Moritz","roleDisplay":"VerfasserIn"},{"display":"Gärttner, Martin","family":"Gärttner","roleDisplay":"VerfasserIn","role":"aut","given":"Martin"}],"note":["Gesehen am 13.07.2022"],"type":{"media":"Online-Ressource","bibl":"chapter"}} | ||
| SRT | |a REHMORITZGVARIATIONA7202 | ||