Variational Monte Carlo approach to partial differential equations with neural networks

The accurate numerical solution of partial differential equations is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving partial differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reh, Moritz (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: June 7, 2022
In: Arxiv
Year: 2022, Pages: 1-9
DOI:10.48550/arXiv.2206.01927
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2206.01927
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2206.01927
Volltext
Verfasserangaben:Moritz Reh and Martin Gärttner

MARC

LEADER 00000caa a2200000 c 4500
001 1810069947
003 DE-627
005 20220820222322.0
007 cr uuu---uuuuu
008 220713s2022 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2206.01927  |2 doi 
035 |a (DE-627)1810069947 
035 |a (DE-599)KXP1810069947 
035 |a (OCoLC)1341463927 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Reh, Moritz  |d 1995-  |e VerfasserIn  |0 (DE-588)1247844358  |0 (DE-627)1782431616  |4 aut 
245 1 0 |a Variational Monte Carlo approach to partial differential equations with neural networks  |c Moritz Reh and Martin Gärttner 
264 1 |c June 7, 2022 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.07.2022 
520 |a The accurate numerical solution of partial differential equations is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving partial differential equations governing the evolution of high dimensional probability distributions. Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters, which are adapted dynamically during the evolution to optimally reflect the dynamics of the density. For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions in regimes inaccessible to traditional computational approaches. 
650 4 |a Computer Science - Machine Learning 
650 4 |a Mathematics - Dynamical Systems 
650 4 |a Mathematics - Numerical Analysis 
650 4 |a Physics - Computational Physics 
700 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2022), Artikel-ID 2206.01927, Seite 1-9  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Variational Monte Carlo approach to partial differential equations with neural networks 
773 1 8 |g year:2022  |g elocationid:2206.01927  |g pages:1-9  |g extent:9  |a Variational Monte Carlo approach to partial differential equations with neural networks 
856 4 0 |u https://doi.org/10.48550/arXiv.2206.01927  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2206.01927  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220713 
993 |a Article 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |d 130000  |d 130200  |d 700000  |d 728500  |e 130000PG1047469529  |e 130000PG1047469529  |e 130200PG1047469529  |e 700000PG1047469529  |e 728500PG1047469529  |k 0/130000/  |k 0/130000/  |k 1/130000/130200/  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 1247844358  |a Reh, Moritz  |m 1247844358:Reh, Moritz  |d 130000  |d 130700  |d 700000  |d 728500  |e 130000PR1247844358  |e 130700PR1247844358  |e 700000PR1247844358  |e 728500PR1247844358  |k 0/130000/  |k 1/130000/130700/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1810069947  |e 4164797231 
BIB |a Y 
JSO |a {"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"June 7, 2022"}],"relHost":[{"disp":"Variational Monte Carlo approach to partial differential equations with neural networksArxiv","pubHistory":["1991 -"],"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991"}],"part":{"year":"2022","extent":"9","text":"(2022), Artikel-ID 2206.01927, Seite 1-9","pages":"1-9"},"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"recId":"509006531","title":[{"title_sort":"Arxiv","title":"Arxiv"}],"note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"}}],"name":{"displayForm":["Moritz Reh and Martin Gärttner"]},"physDesc":[{"extent":"9 S."}],"language":["eng"],"id":{"eki":["1810069947"],"doi":["10.48550/arXiv.2206.01927"]},"recId":"1810069947","title":[{"title_sort":"Variational Monte Carlo approach to partial differential equations with neural networks","title":"Variational Monte Carlo approach to partial differential equations with neural networks"}],"person":[{"given":"Moritz","role":"aut","family":"Reh","display":"Reh, Moritz","roleDisplay":"VerfasserIn"},{"display":"Gärttner, Martin","family":"Gärttner","roleDisplay":"VerfasserIn","role":"aut","given":"Martin"}],"note":["Gesehen am 13.07.2022"],"type":{"media":"Online-Ressource","bibl":"chapter"}} 
SRT |a REHMORITZGVARIATIONA7202