Variational learning of quantum ground states on spiking neuromorphic hardware

Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Klassert, Robert (VerfasserIn) , Baumbach, Andreas (VerfasserIn) , Petrovici, Mihai A. (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: November 29, 2021
In: Arxiv
Year: 2021, Pages: 1-13
DOI:10.48550/arXiv.2109.15169
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.15169
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.15169
Volltext
Verfasserangaben:Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner

MARC

LEADER 00000caa a2200000 c 4500
001 1810071453
003 DE-627
005 20220820222340.0
007 cr uuu---uuuuu
008 220713s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2109.15169  |2 doi 
035 |a (DE-627)1810071453 
035 |a (DE-599)KXP1810071453 
035 |a (OCoLC)1341463797 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Klassert, Robert  |e VerfasserIn  |0 (DE-588)1262513448  |0 (DE-627)1810209722  |4 aut 
245 1 0 |a Variational learning of quantum ground states on spiking neuromorphic hardware  |c Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner 
264 1 |c November 29, 2021 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.07.2022 
520 |a Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional neural networks, physical-model devices offer a fast, efficient and inherently parallel substrate capable of related forms of Markov chain Monte Carlo sampling. Here, we demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization. We develop a training algorithm and apply it to the transverse field Ising model, showing good performance at moderate system sizes ($N\leq 10$). A systematic hyperparameter study shows that scalability to larger system sizes mainly depends on sample quality, which is limited by temporal parameter variations on the analog neuromorphic chip. Our work thus provides an important step towards harnessing the capabilities of neuromorphic hardware for tackling the curse of dimensionality in quantum many-body problems. 
650 4 |a Computer Science - Emerging Technologies 
650 4 |a Computer Science - Neural and Evolutionary Computing 
650 4 |a Condensed Matter - Disordered Systems and Neural Networks 
650 4 |a Quantum Physics 
700 1 |a Baumbach, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1169784216  |0 (DE-627)1035890704  |0 (DE-576)512249334  |4 aut 
700 1 |a Petrovici, Mihai A.  |e VerfasserIn  |0 (DE-588)1072021005  |0 (DE-627)826788823  |0 (DE-576)433488700  |4 aut 
700 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 2109.15169, Seite 1-13  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Variational learning of quantum ground states on spiking neuromorphic hardware 
773 1 8 |g year:2021  |g elocationid:2109.15169  |g pages:1-13  |g extent:13  |a Variational learning of quantum ground states on spiking neuromorphic hardware 
856 4 0 |u https://doi.org/10.48550/arXiv.2109.15169  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2109.15169  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220713 
993 |a Article 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |d 130200  |d 130000  |d 700000  |d 728500  |e 130000PG1047469529  |e 130200PG1047469529  |e 130000PG1047469529  |e 700000PG1047469529  |e 728500PG1047469529  |k 0/130000/  |k 1/130000/130200/  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 4  |y j 
998 |g 1072021005  |a Petrovici, Mihai A.  |m 1072021005:Petrovici, Mihai A.  |d 130000  |d 130700  |d 700000  |d 728500  |e 130000PP1072021005  |e 130700PP1072021005  |e 700000PP1072021005  |e 728500PP1072021005  |k 0/130000/  |k 1/130000/130700/  |k 0/700000/  |k 1/700000/728500/  |p 3 
998 |g 1169784216  |a Baumbach, Andreas  |m 1169784216:Baumbach, Andreas  |d 130000  |d 130700  |d 700000  |d 728500  |e 130000PB1169784216  |e 130700PB1169784216  |e 700000PB1169784216  |e 728500PB1169784216  |k 0/130000/  |k 1/130000/130700/  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1262513448  |a Klassert, Robert  |m 1262513448:Klassert, Robert  |p 1  |x j 
999 |a KXP-PPN1810071453  |e 4164900199 
BIB |a Y 
JSO |a {"recId":"1810071453","physDesc":[{"extent":"13 S."}],"id":{"doi":["10.48550/arXiv.2109.15169"],"eki":["1810071453"]},"language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"person":[{"roleDisplay":"VerfasserIn","display":"Klassert, Robert","family":"Klassert","given":"Robert","role":"aut"},{"family":"Baumbach","display":"Baumbach, Andreas","roleDisplay":"VerfasserIn","role":"aut","given":"Andreas"},{"roleDisplay":"VerfasserIn","family":"Petrovici","display":"Petrovici, Mihai A.","role":"aut","given":"Mihai A."},{"family":"Gärttner","display":"Gärttner, Martin","roleDisplay":"VerfasserIn","given":"Martin","role":"aut"}],"title":[{"title":"Variational learning of quantum ground states on spiking neuromorphic hardware","title_sort":"Variational learning of quantum ground states on spiking neuromorphic hardware"}],"note":["Gesehen am 13.07.2022"],"origin":[{"dateIssuedDisp":"November 29, 2021","dateIssuedKey":"2021"}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"recId":"509006531","part":{"extent":"13","text":"(2021), Artikel-ID 2109.15169, Seite 1-13","pages":"1-13","year":"2021"},"disp":"Variational learning of quantum ground states on spiking neuromorphic hardwareArxiv","pubHistory":["1991 -"],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}]}],"name":{"displayForm":["Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner"]}} 
SRT |a KLASSERTROVARIATIONA2920