Variational learning of quantum ground states on spiking neuromorphic hardware
Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional ne...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
November 29, 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-13 |
| DOI: | 10.48550/arXiv.2109.15169 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.15169 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.15169 |
| Author Notes: | Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner |
Search Result 1