Variational learning of quantum ground states on spiking neuromorphic hardware

Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional ne...

Full description

Saved in:
Bibliographic Details
Main Authors: Klassert, Robert (Author) , Baumbach, Andreas (Author) , Petrovici, Mihai A. (Author) , Gärttner, Martin (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: November 29, 2021
In: Arxiv
Year: 2021, Pages: 1-13
DOI:10.48550/arXiv.2109.15169
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.15169
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.15169
Get full text
Author Notes:Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner
Search Result 1

Variational learning of quantum ground states on spiking neuromorphic hardware by Klassert, Robert (Author) , Baumbach, Andreas (Author) , Petrovici, Mihai A. (Author) , Gärttner, Martin (Author) ,


Get full text
Article (Journal) Online Resource