Understanding event-generation networks via uncertainties
Following the growing success of generative neural networks in LHC simulations, the crucial question is how to control the networks and assign uncertainties to their event output. We show how Bayesian normalizing flow or invertible networks capture uncertainties from the training and turn them into...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
October 4, 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-26 |
| DOI: | 10.48550/arXiv.2104.04543 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2104.04543 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2104.04543 |
| Verfasserangaben: | Marco Bellagente, Manuel Haußmann, Michel Luchmann, and Tilman Plehn |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810080991 | ||
| 003 | DE-627 | ||
| 005 | 20220820222443.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220713s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2104.04543 |2 doi | |
| 035 | |a (DE-627)1810080991 | ||
| 035 | |a (DE-599)KXP1810080991 | ||
| 035 | |a (OCoLC)1341463802 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Bellagente, Marco |d 1993- |e VerfasserIn |0 (DE-588)1211496058 |0 (DE-627)1699769591 |4 aut | |
| 245 | 1 | 0 | |a Understanding event-generation networks via uncertainties |c Marco Bellagente, Manuel Haußmann, Michel Luchmann, and Tilman Plehn |
| 264 | 1 | |c October 4, 2021 | |
| 300 | |a 26 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 13.07.2022 | ||
| 520 | |a Following the growing success of generative neural networks in LHC simulations, the crucial question is how to control the networks and assign uncertainties to their event output. We show how Bayesian normalizing flow or invertible networks capture uncertainties from the training and turn them into an uncertainty on the event weight. Fundamentally, the interplay between density and uncertainty estimates indicates that these networks learn functions in analogy to parameter fits rather than binned event counts. | ||
| 650 | 4 | |a High Energy Physics - Phenomenology | |
| 700 | 1 | |a Haußmann, Manuel |d 1990- |e VerfasserIn |0 (DE-588)1205492046 |0 (DE-627)1691155802 |4 aut | |
| 700 | 1 | |a Luchmann, Michel |d 1994- |e VerfasserIn |0 (DE-588)1205492771 |0 (DE-627)1691156868 |4 aut | |
| 700 | 1 | |a Plehn, Tilman |d 1969- |e VerfasserIn |0 (DE-588)1021935573 |0 (DE-627)715839535 |0 (DE-576)363449809 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 2104.04543, Seite 1-26 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Understanding event-generation networks via uncertainties |
| 773 | 1 | 8 | |g year:2021 |g elocationid:2104.04543 |g pages:1-26 |g extent:26 |a Understanding event-generation networks via uncertainties |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2104.04543 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2104.04543 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220713 | ||
| 993 | |a Article | ||
| 998 | |g 1021935573 |a Plehn, Tilman |m 1021935573:Plehn, Tilman |d 130000 |d 130300 |d 700000 |d 728500 |e 130000PP1021935573 |e 130300PP1021935573 |e 700000PP1021935573 |e 728500PP1021935573 |k 0/130000/ |k 1/130000/130300/ |k 0/700000/ |k 1/700000/728500/ |p 4 |y j | ||
| 998 | |g 1205492771 |a Luchmann, Michel |m 1205492771:Luchmann, Michel |d 130000 |d 130300 |e 130000PL1205492771 |e 130300PL1205492771 |k 0/130000/ |k 1/130000/130300/ |p 3 | ||
| 998 | |g 1205492046 |a Haußmann, Manuel |m 1205492046:Haußmann, Manuel |d 110000 |e 110000PH1205492046 |k 0/110000/ |p 2 | ||
| 998 | |g 1211496058 |a Bellagente, Marco |m 1211496058:Bellagente, Marco |d 130000 |e 130000PB1211496058 |k 0/130000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1810080991 |e 4165061964 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"display":"Bellagente, Marco","roleDisplay":"VerfasserIn","role":"aut","family":"Bellagente","given":"Marco"},{"role":"aut","display":"Haußmann, Manuel","roleDisplay":"VerfasserIn","given":"Manuel","family":"Haußmann"},{"display":"Luchmann, Michel","roleDisplay":"VerfasserIn","role":"aut","family":"Luchmann","given":"Michel"},{"display":"Plehn, Tilman","roleDisplay":"VerfasserIn","role":"aut","family":"Plehn","given":"Tilman"}],"title":[{"title_sort":"Understanding event-generation networks via uncertainties","title":"Understanding event-generation networks via uncertainties"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 13.07.2022"],"language":["eng"],"recId":"1810080991","name":{"displayForm":["Marco Bellagente, Manuel Haußmann, Michel Luchmann, and Tilman Plehn"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"October 4, 2021"}],"id":{"doi":["10.48550/arXiv.2104.04543"],"eki":["1810080991"]},"physDesc":[{"extent":"26 S."}],"relHost":[{"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2021","pages":"1-26","text":"(2021), Artikel-ID 2104.04543, Seite 1-26","extent":"26"},"disp":"Understanding event-generation networks via uncertaintiesArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]}}]} | ||
| SRT | |a BELLAGENTEUNDERSTAND4202 | ||