Proposal-free volumetric instance segmentation from latent single-instance masks

This work introduces a new proposal-free instance segmentation method that builds on single-instance segmentation masks predicted across the entire image in a sliding window style. In contrast to related approaches, our method concurrently predicts all masks, one for each pixel, and thus resolves an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bailoni, Alberto (VerfasserIn) , Pape, Constantin (VerfasserIn) , Wolf, Steffen (VerfasserIn) , Kreshuk, Anna (VerfasserIn) , Hamprecht, Fred (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 10 Sep 2020
In: Arxiv
Year: 2020, Pages: 1-20
DOI:10.48550/arXiv.2009.04998
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2009.04998
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2009.04998
Volltext
Verfasserangaben:Alberto Bailoni, Constantin Pape, Steffen Wolf, Anna Kreshuk, and Fred A. Hamprecht
Beschreibung
Zusammenfassung:This work introduces a new proposal-free instance segmentation method that builds on single-instance segmentation masks predicted across the entire image in a sliding window style. In contrast to related approaches, our method concurrently predicts all masks, one for each pixel, and thus resolves any conflict jointly across the entire image. Specifically, predictions from overlapping masks are combined into edge weights of a signed graph that is subsequently partitioned to obtain all final instances concurrently. The result is a parameter-free method that is strongly robust to noise and prioritizes predictions with the highest consensus across overlapping masks. All masks are decoded from a low dimensional latent representation, which results in great memory savings strictly required for applications to large volumetric images. We test our method on the challenging CREMI 2016 neuron segmentation benchmark where it achieves competitive scores.
Beschreibung:Gesehen am 13.07.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2009.04998