Probabilistic watershed: sampling all spanning forests for seeded segmentation and semi-supervised learning
The seeded Watershed algorithm / minimax semi-supervised learning on a graph computes a minimum spanning forest which connects every pixel / unlabeled node to a seed / labeled node. We propose instead to consider all possible spanning forests and calculate, for every node, the probability of samplin...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
6 Nov 2019
|
| In: |
Arxiv
Year: 2019, Pages: 1-19 |
| DOI: | 10.48550/arXiv.1911.02921 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1911.02921 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1911.02921 |
| Verfasserangaben: | Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810090725 | ||
| 003 | DE-627 | ||
| 005 | 20240406164638.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220713s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.1911.02921 |2 doi | |
| 035 | |a (DE-627)1810090725 | ||
| 035 | |a (DE-599)KXP1810090725 | ||
| 035 | |a (OCoLC)1341463762 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 245 | 0 | 0 | |a Probabilistic watershed |b sampling all spanning forests for seeded segmentation and semi-supervised learning |c Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht |
| 264 | 1 | |c 6 Nov 2019 | |
| 300 | |a 19 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 13.07.2022 | ||
| 520 | |a The seeded Watershed algorithm / minimax semi-supervised learning on a graph computes a minimum spanning forest which connects every pixel / unlabeled node to a seed / labeled node. We propose instead to consider all possible spanning forests and calculate, for every node, the probability of sampling a forest connecting a certain seed with that node. We dub this approach "Probabilistic Watershed". Leo Grady (2006) already noted its equivalence to the Random Walker / Harmonic energy minimization. We here give a simpler proof of this equivalence and establish the computational feasibility of the Probabilistic Watershed with Kirchhoff's matrix tree theorem. Furthermore, we show a new connection between the Random Walker probabilities and the triangle inequality of the effective resistance. Finally, we derive a new and intuitive interpretation of the Power Watershed. | ||
| 650 | 4 | |a Computer Science - Computer Vision and Pattern Recognition | |
| 650 | 4 | |a Computer Science - Data Structures and Algorithms | |
| 700 | 1 | |a Damrich, Sebastian |d 1993- |e VerfasserIn |0 (DE-588)124699593X |0 (DE-627)1780416156 |4 aut | |
| 700 | 1 | |a Hamprecht, Fred |e VerfasserIn |0 (DE-588)1020505605 |0 (DE-627)691240280 |0 (DE-576)360605516 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2019), Artikel-ID 1911.02921, Seite 1-19 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Probabilistic watershed sampling all spanning forests for seeded segmentation and semi-supervised learning |
| 773 | 1 | 8 | |g year:2019 |g elocationid:1911.02921 |g pages:1-19 |g extent:19 |a Probabilistic watershed sampling all spanning forests for seeded segmentation and semi-supervised learning |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.1911.02921 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1911.02921 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220713 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1020505605 |a Hamprecht, Fred |m 1020505605:Hamprecht, Fred |d 700000 |d 708070 |d 700000 |d 728500 |e 700000PH1020505605 |e 708070PH1020505605 |e 700000PH1020505605 |e 728500PH1020505605 |k 0/700000/ |k 1/700000/708070/ |k 0/700000/ |k 1/700000/728500/ |p 3 |y j | ||
| 998 | |g 124699593X |a Damrich, Sebastian |m 124699593X:Damrich, Sebastian |d 700000 |d 708070 |d 700000 |d 728500 |e 700000PD124699593X |e 708070PD124699593X |e 700000PD124699593X |e 728500PD124699593X |k 0/700000/ |k 1/700000/708070/ |k 0/700000/ |k 1/700000/728500/ |p 2 | ||
| 998 | |g 1262514363 |a Fita Sanmartín, Enrique |m 1262514363:Fita Sanmartín, Enrique |d 700000 |d 708000 |d 700000 |d 728500 |e 700000PF1262514363 |e 708000PF1262514363 |e 700000PF1262514363 |e 728500PF1262514363 |k 0/700000/ |k 1/700000/708000/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1810090725 |e 4165157449 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"display":"Damrich, Sebastian","family":"Damrich","role":"aut","given":"Sebastian"},{"role":"aut","given":"Fred","display":"Hamprecht, Fred","family":"Hamprecht"}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"6 Nov 2019"}],"note":["Gesehen am 13.07.2022"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"title":[{"subtitle":"sampling all spanning forests for seeded segmentation and semi-supervised learning","title_sort":"Probabilistic watershed","title":"Probabilistic watershed"}],"language":["eng"],"name":{"displayForm":["Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht"]},"physDesc":[{"extent":"19 S."}],"recId":"1810090725","relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1991 -"],"recId":"509006531","id":{"zdb":["2225896-6"],"eki":["509006531"]},"disp":"Probabilistic watershed sampling all spanning forests for seeded segmentation and semi-supervised learningArxiv","note":["Gesehen am 28.05.2024"],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-"}],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"pages":"1-19","text":"(2019), Artikel-ID 1911.02921, Seite 1-19","year":"2019","extent":"19"},"language":["eng"]}],"id":{"doi":["10.48550/arXiv.1911.02921"],"eki":["1810090725"]}} | ||
| SRT | |a DAMRICHSEBPROBABILIS6201 | ||