Probabilistic watershed: sampling all spanning forests for seeded segmentation and semi-supervised learning

The seeded Watershed algorithm / minimax semi-supervised learning on a graph computes a minimum spanning forest which connects every pixel / unlabeled node to a seed / labeled node. We propose instead to consider all possible spanning forests and calculate, for every node, the probability of samplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Damrich, Sebastian (VerfasserIn) , Hamprecht, Fred (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 6 Nov 2019
In: Arxiv
Year: 2019, Pages: 1-19
DOI:10.48550/arXiv.1911.02921
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1911.02921
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1911.02921
Volltext
Verfasserangaben:Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht

MARC

LEADER 00000caa a2200000 c 4500
001 1810090725
003 DE-627
005 20240406164638.0
007 cr uuu---uuuuu
008 220713s2019 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.1911.02921  |2 doi 
035 |a (DE-627)1810090725 
035 |a (DE-599)KXP1810090725 
035 |a (OCoLC)1341463762 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
245 0 0 |a Probabilistic watershed  |b sampling all spanning forests for seeded segmentation and semi-supervised learning  |c Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht 
264 1 |c 6 Nov 2019 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.07.2022 
520 |a The seeded Watershed algorithm / minimax semi-supervised learning on a graph computes a minimum spanning forest which connects every pixel / unlabeled node to a seed / labeled node. We propose instead to consider all possible spanning forests and calculate, for every node, the probability of sampling a forest connecting a certain seed with that node. We dub this approach "Probabilistic Watershed". Leo Grady (2006) already noted its equivalence to the Random Walker / Harmonic energy minimization. We here give a simpler proof of this equivalence and establish the computational feasibility of the Probabilistic Watershed with Kirchhoff's matrix tree theorem. Furthermore, we show a new connection between the Random Walker probabilities and the triangle inequality of the effective resistance. Finally, we derive a new and intuitive interpretation of the Power Watershed. 
650 4 |a Computer Science - Computer Vision and Pattern Recognition 
650 4 |a Computer Science - Data Structures and Algorithms 
700 1 |a Damrich, Sebastian  |d 1993-  |e VerfasserIn  |0 (DE-588)124699593X  |0 (DE-627)1780416156  |4 aut 
700 1 |a Hamprecht, Fred  |e VerfasserIn  |0 (DE-588)1020505605  |0 (DE-627)691240280  |0 (DE-576)360605516  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2019), Artikel-ID 1911.02921, Seite 1-19  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Probabilistic watershed sampling all spanning forests for seeded segmentation and semi-supervised learning 
773 1 8 |g year:2019  |g elocationid:1911.02921  |g pages:1-19  |g extent:19  |a Probabilistic watershed sampling all spanning forests for seeded segmentation and semi-supervised learning 
856 4 0 |u https://doi.org/10.48550/arXiv.1911.02921  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/1911.02921  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220713 
993 |a Article 
994 |a 2019 
998 |g 1020505605  |a Hamprecht, Fred  |m 1020505605:Hamprecht, Fred  |d 700000  |d 708070  |d 700000  |d 728500  |e 700000PH1020505605  |e 708070PH1020505605  |e 700000PH1020505605  |e 728500PH1020505605  |k 0/700000/  |k 1/700000/708070/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
998 |g 124699593X  |a Damrich, Sebastian  |m 124699593X:Damrich, Sebastian  |d 700000  |d 708070  |d 700000  |d 728500  |e 700000PD124699593X  |e 708070PD124699593X  |e 700000PD124699593X  |e 728500PD124699593X  |k 0/700000/  |k 1/700000/708070/  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1262514363  |a Fita Sanmartín, Enrique  |m 1262514363:Fita Sanmartín, Enrique  |d 700000  |d 708000  |d 700000  |d 728500  |e 700000PF1262514363  |e 708000PF1262514363  |e 700000PF1262514363  |e 728500PF1262514363  |k 0/700000/  |k 1/700000/708000/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1810090725  |e 4165157449 
BIB |a Y 
JSO |a {"person":[{"display":"Damrich, Sebastian","family":"Damrich","role":"aut","given":"Sebastian"},{"role":"aut","given":"Fred","display":"Hamprecht, Fred","family":"Hamprecht"}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"6 Nov 2019"}],"note":["Gesehen am 13.07.2022"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"title":[{"subtitle":"sampling all spanning forests for seeded segmentation and semi-supervised learning","title_sort":"Probabilistic watershed","title":"Probabilistic watershed"}],"language":["eng"],"name":{"displayForm":["Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht"]},"physDesc":[{"extent":"19 S."}],"recId":"1810090725","relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1991 -"],"recId":"509006531","id":{"zdb":["2225896-6"],"eki":["509006531"]},"disp":"Probabilistic watershed sampling all spanning forests for seeded segmentation and semi-supervised learningArxiv","note":["Gesehen am 28.05.2024"],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-"}],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"pages":"1-19","text":"(2019), Artikel-ID 1911.02921, Seite 1-19","year":"2019","extent":"19"},"language":["eng"]}],"id":{"doi":["10.48550/arXiv.1911.02921"],"eki":["1810090725"]}} 
SRT |a DAMRICHSEBPROBABILIS6201