Probabilistic watershed: sampling all spanning forests for seeded segmentation and semi-supervised learning

The seeded Watershed algorithm / minimax semi-supervised learning on a graph computes a minimum spanning forest which connects every pixel / unlabeled node to a seed / labeled node. We propose instead to consider all possible spanning forests and calculate, for every node, the probability of samplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Damrich, Sebastian (VerfasserIn) , Hamprecht, Fred (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 6 Nov 2019
In: Arxiv
Year: 2019, Pages: 1-19
DOI:10.48550/arXiv.1911.02921
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1911.02921
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1911.02921
Volltext
Verfasserangaben:Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht
Beschreibung
Zusammenfassung:The seeded Watershed algorithm / minimax semi-supervised learning on a graph computes a minimum spanning forest which connects every pixel / unlabeled node to a seed / labeled node. We propose instead to consider all possible spanning forests and calculate, for every node, the probability of sampling a forest connecting a certain seed with that node. We dub this approach "Probabilistic Watershed". Leo Grady (2006) already noted its equivalence to the Random Walker / Harmonic energy minimization. We here give a simpler proof of this equivalence and establish the computational feasibility of the Probabilistic Watershed with Kirchhoff's matrix tree theorem. Furthermore, we show a new connection between the Random Walker probabilities and the triangle inequality of the effective resistance. Finally, we derive a new and intuitive interpretation of the Power Watershed.
Beschreibung:Gesehen am 13.07.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.1911.02921