Probabilistic watershed: sampling all spanning forests for seeded segmentation and semi-supervised learning

The seeded Watershed algorithm / minimax semi-supervised learning on a graph computes a minimum spanning forest which connects every pixel / unlabeled node to a seed / labeled node. We propose instead to consider all possible spanning forests and calculate, for every node, the probability of samplin...

Full description

Saved in:
Bibliographic Details
Main Authors: Damrich, Sebastian (Author) , Hamprecht, Fred (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 6 Nov 2019
In: Arxiv
Year: 2019, Pages: 1-19
DOI:10.48550/arXiv.1911.02921
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1911.02921
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1911.02921
Get full text
Author Notes:Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht
Search Result 1

Probabilistic watershed: sampling all spanning forests for seeded segmentation and semisupervised learning by Fita Sanmartín, Enrique (Author) , Damrich, Sebastian (Author) , Hamprecht, Fred (Author) ,


Get full text
Chapter/Article Conference Paper