Sampling-free variational inference of Bayesian neural networks by variance backpropagation
We propose a new Bayesian Neural Net formulation that affords variational inference for which the evidence lower bound is analytically tractable subject to a tight approximation. We achieve this tractability by (i) decomposing ReLU nonlinearities into the product of an identity and a Heaviside step...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2018
|
| In: |
Arxiv
Year: 2018, Pages: 1-15 |
| DOI: | 10.48550/arXiv.1805.07654 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1805.07654 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1805.07654 |
| Author Notes: | Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 181009206X | ||
| 003 | DE-627 | ||
| 005 | 20220820222716.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220713s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.1805.07654 |2 doi | |
| 035 | |a (DE-627)181009206X | ||
| 035 | |a (DE-599)KXP181009206X | ||
| 035 | |a (OCoLC)1341463814 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Haußmann, Manuel |d 1990- |e VerfasserIn |0 (DE-588)1205492046 |0 (DE-627)1691155802 |4 aut | |
| 245 | 1 | 0 | |a Sampling-free variational inference of Bayesian neural networks by variance backpropagation |c Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir |
| 264 | 1 | |c 2018 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Last revised 12 Jun 2019 | ||
| 500 | |a Gesehen am 13.07.2022 | ||
| 520 | |a We propose a new Bayesian Neural Net formulation that affords variational inference for which the evidence lower bound is analytically tractable subject to a tight approximation. We achieve this tractability by (i) decomposing ReLU nonlinearities into the product of an identity and a Heaviside step function, (ii) introducing a separate path that decomposes the neural net expectation from its variance. We demonstrate formally that introducing separate latent binary variables to the activations allows representing the neural network likelihood as a chain of linear operations. Performing variational inference on this construction enables a sampling-free computation of the evidence lower bound which is a more effective approximation than the widely applied Monte Carlo sampling and CLT related techniques. We evaluate the model on a range of regression and classification tasks against BNN inference alternatives, showing competitive or improved performance over the current state-of-the-art. | ||
| 650 | 4 | |a Computer Science - Machine Learning | |
| 650 | 4 | |a Statistics - Machine Learning | |
| 700 | 1 | |a Hamprecht, Fred |e VerfasserIn |0 (DE-588)1020505605 |0 (DE-627)691240280 |0 (DE-576)360605516 |4 aut | |
| 700 | 1 | |a Kandemir, Melih |d 1983- |e VerfasserIn |0 (DE-588)1067700463 |0 (DE-627)819103551 |0 (DE-576)426867181 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018), Artikel-ID 1805.07654, Seite 1-15 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Sampling-free variational inference of Bayesian neural networks by variance backpropagation |
| 773 | 1 | 8 | |g year:2018 |g elocationid:1805.07654 |g pages:1-15 |g extent:15 |a Sampling-free variational inference of Bayesian neural networks by variance backpropagation |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.1805.07654 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1805.07654 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220713 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1020505605 |a Hamprecht, Fred |m 1020505605:Hamprecht, Fred |d 700000 |d 708070 |e 700000PH1020505605 |e 708070PH1020505605 |k 0/700000/ |k 1/700000/708070/ |p 2 | ||
| 998 | |g 1205492046 |a Haußmann, Manuel |m 1205492046:Haußmann, Manuel |d 700000 |d 708070 |e 700000PH1205492046 |e 708070PH1205492046 |k 0/700000/ |k 1/700000/708070/ |p 1 |x j | ||
| 999 | |a KXP-PPN181009206X |e 4165160946 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"recId":"509006531","pubHistory":["1991 -"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"disp":"Sampling-free variational inference of Bayesian neural networks by variance backpropagationArxiv","language":["eng"],"part":{"extent":"15","year":"2018","text":"(2018), Artikel-ID 1805.07654, Seite 1-15","pages":"1-15"},"note":["Gesehen am 28.05.2024"],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"id":{"eki":["181009206X"],"doi":["10.48550/arXiv.1805.07654"]},"name":{"displayForm":["Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir"]},"physDesc":[{"extent":"15 S."}],"recId":"181009206X","title":[{"title_sort":"Sampling-free variational inference of Bayesian neural networks by variance backpropagation","title":"Sampling-free variational inference of Bayesian neural networks by variance backpropagation"}],"note":["Last revised 12 Jun 2019","Gesehen am 13.07.2022"],"origin":[{"dateIssuedDisp":"2018","dateIssuedKey":"2018"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"language":["eng"],"person":[{"display":"Haußmann, Manuel","family":"Haußmann","role":"aut","given":"Manuel"},{"given":"Fred","role":"aut","family":"Hamprecht","display":"Hamprecht, Fred"},{"family":"Kandemir","display":"Kandemir, Melih","given":"Melih","role":"aut"}]} | ||
| SRT | |a HAUSSMANNMSAMPLINGFR2018 | ||