Minimum degree conditions for tight Hamilton cycles
We develop a new framework to study minimum𝑑-degree conditions in𝑘-uniform hypergraphs, whichguarantee the existence of a tight Hamilton cycle. Ourmain theoreticalresult dealswith thetypical absorption,path cover and connecting arguments for all𝑘and𝑑at once, and thus sheds light on the underlying st...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
11 April 2022
|
| In: |
Journal of the London Mathematical Society
Year: 2022, Jahrgang: 105, Heft: 4, Pages: 2249-2323 |
| ISSN: | 1469-7750 |
| DOI: | 10.1112/jlms.12561 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1112/jlms.12561 Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12561 |
| Verfasserangaben: | Richard Lang, Nicolás Sanhueza-Matamala |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810103193 | ||
| 003 | DE-627 | ||
| 005 | 20240123124925.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220713s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/jlms.12561 |2 doi | |
| 035 | |a (DE-627)1810103193 | ||
| 035 | |a (DE-599)KXP1810103193 | ||
| 035 | |a (OCoLC)1341463968 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Lang, Richard |e VerfasserIn |0 (DE-588)122670008X |0 (DE-627)1747737372 |4 aut | |
| 245 | 1 | 0 | |a Minimum degree conditions for tight Hamilton cycles |c Richard Lang, Nicolás Sanhueza-Matamala |
| 264 | 1 | |c 11 April 2022 | |
| 300 | |a 75 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 13.07.2022 | ||
| 520 | |a We develop a new framework to study minimum-degree conditions in-uniform hypergraphs, whichguarantee the existence of a tight Hamilton cycle. Ourmain theoreticalresult dealswith thetypical absorption,path cover and connecting arguments for allandat once, and thus sheds light on the underlying struc-tural problems. Building on this, we show that one canstudy minimum-degree conditions of-uniform tightHamiltoncyclesbyfocusingontheinnerstructureoftheneighbourhoods. This reduces the matter to an Erdös–Gallai-type question for( − )-uniform hypergraphs,which is of independent interest. Once this frameworkis established, we can easily derive two new bounds.Firstly, we extend a classic result of Rödl, Ruciński andSzemerédi for=−1by determining asymptoticallybest possible degree conditions for=−2and all⩾3. This was proved independently by Polcyn, Reiher,Rödl and Schülke. Secondly, we provide a general upperbound of1 − 1∕(2( − ))for the tight Hamilton cycle-degree threshold in-uniform hypergraphs, thus nar-rowing the gap to the lower bound of1−1∕√−dueto Han and Zhao | ||
| 700 | 1 | |a Sanhueza-Matamala, Nicolás |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a London Mathematical Society |t Journal of the London Mathematical Society |d Oxford : Wiley, 1926 |g 105(2022), 4, Seite 2249-2323 |h Online-Ressource |w (DE-627)270126953 |w (DE-600)1476428-3 |w (DE-576)078129079 |x 1469-7750 |7 nnas |
| 773 | 1 | 8 | |g volume:105 |g year:2022 |g number:4 |g pages:2249-2323 |g extent:75 |a Minimum degree conditions for tight Hamilton cycles |
| 856 | 4 | 0 | |u https://doi.org/10.1112/jlms.12561 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12561 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220713 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 122670008X |a Lang, Richard |m 122670008X:Lang, Richard |d 110000 |d 110300 |e 110000PL122670008X |e 110300PL122670008X |k 0/110000/ |k 1/110000/110300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1810103193 |e 4165213179 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1810103193","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 13.07.2022"],"title":[{"title":"Minimum degree conditions for tight Hamilton cycles","title_sort":"Minimum degree conditions for tight Hamilton cycles"}],"person":[{"role":"aut","display":"Lang, Richard","roleDisplay":"VerfasserIn","given":"Richard","family":"Lang"},{"display":"Sanhueza-Matamala, Nicolás","roleDisplay":"VerfasserIn","role":"aut","family":"Sanhueza-Matamala","given":"Nicolás"}],"relHost":[{"origin":[{"publisher":"Wiley ; Cambridge Univ. Press ; Oxford University Press","dateIssuedKey":"1926","dateIssuedDisp":"1926-","publisherPlace":"Oxford ; Cambridge ; Oxford"}],"id":{"zdb":["1476428-3"],"eki":["270126953"],"doi":["10.1112/(ISSN)1469-7750"],"issn":["1469-7750"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Journal of the London Mathematical Society","title":"Journal of the London Mathematical Society"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 16.08.17"],"disp":"London Mathematical SocietyJournal of the London Mathematical Society","recId":"270126953","corporate":[{"role":"aut","display":"London Mathematical Society","roleDisplay":"VerfasserIn"}],"language":["eng"],"pubHistory":["1.1926 -"],"part":{"extent":"75","volume":"105","text":"105(2022), 4, Seite 2249-2323","pages":"2249-2323","issue":"4","year":"2022"}}],"physDesc":[{"extent":"75 S."}],"id":{"doi":["10.1112/jlms.12561"],"eki":["1810103193"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"11 April 2022"}],"name":{"displayForm":["Richard Lang, Nicolás Sanhueza-Matamala"]}} | ||
| SRT | |a LANGRICHARMINIMUMDEG1120 | ||