Minimum degree conditions for tight Hamilton cycles

We develop a new framework to study minimum𝑑-degree conditions in𝑘-uniform hypergraphs, whichguarantee the existence of a tight Hamilton cycle. Ourmain theoreticalresult dealswith thetypical absorption,path cover and connecting arguments for all𝑘and𝑑at once, and thus sheds light on the underlying st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lang, Richard (VerfasserIn) , Sanhueza-Matamala, Nicolás (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 April 2022
In: Journal of the London Mathematical Society
Year: 2022, Jahrgang: 105, Heft: 4, Pages: 2249-2323
ISSN:1469-7750
DOI:10.1112/jlms.12561
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1112/jlms.12561
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12561
Volltext
Verfasserangaben:Richard Lang, Nicolás Sanhueza-Matamala

MARC

LEADER 00000caa a2200000 c 4500
001 1810103193
003 DE-627
005 20240123124925.0
007 cr uuu---uuuuu
008 220713s2022 xx |||||o 00| ||eng c
024 7 |a 10.1112/jlms.12561  |2 doi 
035 |a (DE-627)1810103193 
035 |a (DE-599)KXP1810103193 
035 |a (OCoLC)1341463968 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lang, Richard  |e VerfasserIn  |0 (DE-588)122670008X  |0 (DE-627)1747737372  |4 aut 
245 1 0 |a Minimum degree conditions for tight Hamilton cycles  |c Richard Lang, Nicolás Sanhueza-Matamala 
264 1 |c 11 April 2022 
300 |a 75 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.07.2022 
520 |a We develop a new framework to study minimum-degree conditions in-uniform hypergraphs, whichguarantee the existence of a tight Hamilton cycle. Ourmain theoreticalresult dealswith thetypical absorption,path cover and connecting arguments for allandat once, and thus sheds light on the underlying struc-tural problems. Building on this, we show that one canstudy minimum-degree conditions of-uniform tightHamiltoncyclesbyfocusingontheinnerstructureoftheneighbourhoods. This reduces the matter to an Erdös–Gallai-type question for( − )-uniform hypergraphs,which is of independent interest. Once this frameworkis established, we can easily derive two new bounds.Firstly, we extend a classic result of Rödl, Ruciński andSzemerédi for=−1by determining asymptoticallybest possible degree conditions for=−2and all⩾3. This was proved independently by Polcyn, Reiher,Rödl and Schülke. Secondly, we provide a general upperbound of1 − 1∕(2( − ))for the tight Hamilton cycle-degree threshold in-uniform hypergraphs, thus nar-rowing the gap to the lower bound of1−1∕√−dueto Han and Zhao 
700 1 |a Sanhueza-Matamala, Nicolás  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a London Mathematical Society  |t Journal of the London Mathematical Society  |d Oxford : Wiley, 1926  |g 105(2022), 4, Seite 2249-2323  |h Online-Ressource  |w (DE-627)270126953  |w (DE-600)1476428-3  |w (DE-576)078129079  |x 1469-7750  |7 nnas 
773 1 8 |g volume:105  |g year:2022  |g number:4  |g pages:2249-2323  |g extent:75  |a Minimum degree conditions for tight Hamilton cycles 
856 4 0 |u https://doi.org/10.1112/jlms.12561  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12561  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220713 
993 |a Article 
994 |a 2022 
998 |g 122670008X  |a Lang, Richard  |m 122670008X:Lang, Richard  |d 110000  |d 110300  |e 110000PL122670008X  |e 110300PL122670008X  |k 0/110000/  |k 1/110000/110300/  |p 1  |x j 
999 |a KXP-PPN1810103193  |e 4165213179 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1810103193","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 13.07.2022"],"title":[{"title":"Minimum degree conditions for tight Hamilton cycles","title_sort":"Minimum degree conditions for tight Hamilton cycles"}],"person":[{"role":"aut","display":"Lang, Richard","roleDisplay":"VerfasserIn","given":"Richard","family":"Lang"},{"display":"Sanhueza-Matamala, Nicolás","roleDisplay":"VerfasserIn","role":"aut","family":"Sanhueza-Matamala","given":"Nicolás"}],"relHost":[{"origin":[{"publisher":"Wiley ; Cambridge Univ. Press ; Oxford University Press","dateIssuedKey":"1926","dateIssuedDisp":"1926-","publisherPlace":"Oxford ; Cambridge ; Oxford"}],"id":{"zdb":["1476428-3"],"eki":["270126953"],"doi":["10.1112/(ISSN)1469-7750"],"issn":["1469-7750"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Journal of the London Mathematical Society","title":"Journal of the London Mathematical Society"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 16.08.17"],"disp":"London Mathematical SocietyJournal of the London Mathematical Society","recId":"270126953","corporate":[{"role":"aut","display":"London Mathematical Society","roleDisplay":"VerfasserIn"}],"language":["eng"],"pubHistory":["1.1926 -"],"part":{"extent":"75","volume":"105","text":"105(2022), 4, Seite 2249-2323","pages":"2249-2323","issue":"4","year":"2022"}}],"physDesc":[{"extent":"75 S."}],"id":{"doi":["10.1112/jlms.12561"],"eki":["1810103193"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"11 April 2022"}],"name":{"displayForm":["Richard Lang, Nicolás Sanhueza-Matamala"]}} 
SRT |a LANGRICHARMINIMUMDEG1120