Locally polynomial Hilbertian additive regression
In this paper a new additive regression technique is developed for response variables that take values in general Hilbert spaces. The proposed method is based on the idea of smooth backfitting that has been developed mainly for real-valued responses. The local polynomial smoothing device is adopted,...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
August 2022
|
| In: |
Bernoulli
Year: 2022, Jahrgang: 28, Heft: 3, Pages: 2034-2066 |
| ISSN: | 1573-9759 |
| DOI: | 10.3150/21-BEJ1410 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3150/21-BEJ1410 Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/bernoulli/volume-28/issue-3/Locally-polynomial-Hilbertian-additive-regression/10.3150/21-BEJ1410.full |
| Verfasserangaben: | Jeong Min Jeon, Young Kyung Lee, Enno Mammen and Byeong U. Park |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810233984 | ||
| 003 | DE-627 | ||
| 005 | 20220820223631.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220714s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3150/21-BEJ1410 |2 doi | |
| 035 | |a (DE-627)1810233984 | ||
| 035 | |a (DE-599)KXP1810233984 | ||
| 035 | |a (OCoLC)1341463985 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Jeon, Jeong Min |e VerfasserIn |0 (DE-588)1262530857 |0 (DE-627)1810233879 |4 aut | |
| 245 | 1 | 0 | |a Locally polynomial Hilbertian additive regression |c Jeong Min Jeon, Young Kyung Lee, Enno Mammen and Byeong U. Park |
| 264 | 1 | |c August 2022 | |
| 300 | |a 33 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 14.07.2022 | ||
| 520 | |a In this paper a new additive regression technique is developed for response variables that take values in general Hilbert spaces. The proposed method is based on the idea of smooth backfitting that has been developed mainly for real-valued responses. The local polynomial smoothing device is adopted, which renders various advantages of the technique evidenced in the classical univariate kernel regression with real-valued responses. It is demonstrated that the new technique eliminates many limitations which existing methods are subject to. In contrast to the existing techniques, the proposed approach is equipped with the estimation of the derivatives as well as the regression function itself, and provides options to make the estimated regression function free from boundary effects and possess oracle properties. A comprehensive theory is presented for the proposed method, which includes the rates of convergence in various modes and the asymptotic distributions of the estimators. The efficiency of the proposed method is also demonstrated via simulation study and is illustrated through real data applications. | ||
| 650 | 4 | |a Additive model | |
| 650 | 4 | |a Hilbert space | |
| 650 | 4 | |a local polynomial smoothing | |
| 650 | 4 | |a non-Euclidean data | |
| 650 | 4 | |a smooth backfitting | |
| 700 | 1 | |a Lee, Young Kyung |e VerfasserIn |4 aut | |
| 700 | 1 | |a Mammen, Enno |d 1955- |e VerfasserIn |0 (DE-588)170668606 |0 (DE-627)060788658 |0 (DE-576)13153159X |4 aut | |
| 700 | 1 | |a Park, Byeong U. |e VerfasserIn |0 (DE-588)170780023 |0 (DE-627)060912995 |0 (DE-576)131633414 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Bernoulli |d Aarhus : [Verlag nicht ermittelbar], 1995 |g 28(2022), 3, Seite 2034-2066 |h Online-Ressource |w (DE-627)327395354 |w (DE-600)2044340-7 |w (DE-576)10266952X |x 1573-9759 |7 nnas |a Locally polynomial Hilbertian additive regression |
| 773 | 1 | 8 | |g volume:28 |g year:2022 |g number:3 |g pages:2034-2066 |g extent:33 |a Locally polynomial Hilbertian additive regression |
| 856 | 4 | 0 | |u https://doi.org/10.3150/21-BEJ1410 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://projecteuclid.org/journals/bernoulli/volume-28/issue-3/Locally-polynomial-Hilbertian-additive-regression/10.3150/21-BEJ1410.full |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220714 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 170668606 |a Mammen, Enno |m 170668606:Mammen, Enno |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PM170668606 |e 110200PM170668606 |e 110000PM170668606 |e 110400PM170668606 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 3 | ||
| 999 | |a KXP-PPN1810233984 |e 4165924326 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"family":"Jeon","display":"Jeon, Jeong Min","role":"aut","given":"Jeong Min"},{"family":"Lee","display":"Lee, Young Kyung","role":"aut","given":"Young Kyung"},{"family":"Mammen","display":"Mammen, Enno","role":"aut","given":"Enno"},{"family":"Park","display":"Park, Byeong U.","role":"aut","given":"Byeong U."}],"id":{"eki":["1810233984"],"doi":["10.3150/21-BEJ1410"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"relHost":[{"part":{"volume":"28","text":"28(2022), 3, Seite 2034-2066","year":"2022","extent":"33","issue":"3","pages":"2034-2066"},"disp":"Locally polynomial Hilbertian additive regressionBernoulli","corporate":[{"role":"isb","display":"Bernoulli Society for Mathematical Statistics and Probability"}],"title":[{"subtitle":"official journal of the Bernoulli Society for Mathematical Statistics and Probability","title":"Bernoulli","title_sort":"Bernoulli"}],"physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["327395354"],"issn":["1573-9759"],"zdb":["2044340-7"]},"origin":[{"publisherPlace":"Aarhus","dateIssuedDisp":"1995-","publisher":"[Verlag nicht ermittelbar]","dateIssuedKey":"1995"}],"note":["Gesehen am 30.05.2023"],"language":["eng"],"recId":"327395354","pubHistory":["1.1995 -"]}],"physDesc":[{"extent":"33 S."}],"title":[{"title_sort":"Locally polynomial Hilbertian additive regression","title":"Locally polynomial Hilbertian additive regression"}],"note":["Gesehen am 14.07.2022"],"language":["eng"],"recId":"1810233984","origin":[{"dateIssuedDisp":"August 2022","dateIssuedKey":"2022"}],"name":{"displayForm":["Jeong Min Jeon, Young Kyung Lee, Enno Mammen and Byeong U. Park"]}} | ||
| SRT | |a JEONJEONGMLOCALLYPOL2022 | ||