Locally polynomial Hilbertian additive regression

In this paper a new additive regression technique is developed for response variables that take values in general Hilbert spaces. The proposed method is based on the idea of smooth backfitting that has been developed mainly for real-valued responses. The local polynomial smoothing device is adopted,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jeon, Jeong Min (VerfasserIn) , Lee, Young Kyung (VerfasserIn) , Mammen, Enno (VerfasserIn) , Park, Byeong U. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 2022
In: Bernoulli
Year: 2022, Jahrgang: 28, Heft: 3, Pages: 2034-2066
ISSN:1573-9759
DOI:10.3150/21-BEJ1410
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3150/21-BEJ1410
Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/bernoulli/volume-28/issue-3/Locally-polynomial-Hilbertian-additive-regression/10.3150/21-BEJ1410.full
Volltext
Verfasserangaben:Jeong Min Jeon, Young Kyung Lee, Enno Mammen and Byeong U. Park

MARC

LEADER 00000caa a2200000 c 4500
001 1810233984
003 DE-627
005 20220820223631.0
007 cr uuu---uuuuu
008 220714s2022 xx |||||o 00| ||eng c
024 7 |a 10.3150/21-BEJ1410  |2 doi 
035 |a (DE-627)1810233984 
035 |a (DE-599)KXP1810233984 
035 |a (OCoLC)1341463985 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Jeon, Jeong Min  |e VerfasserIn  |0 (DE-588)1262530857  |0 (DE-627)1810233879  |4 aut 
245 1 0 |a Locally polynomial Hilbertian additive regression  |c Jeong Min Jeon, Young Kyung Lee, Enno Mammen and Byeong U. Park 
264 1 |c August 2022 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.07.2022 
520 |a In this paper a new additive regression technique is developed for response variables that take values in general Hilbert spaces. The proposed method is based on the idea of smooth backfitting that has been developed mainly for real-valued responses. The local polynomial smoothing device is adopted, which renders various advantages of the technique evidenced in the classical univariate kernel regression with real-valued responses. It is demonstrated that the new technique eliminates many limitations which existing methods are subject to. In contrast to the existing techniques, the proposed approach is equipped with the estimation of the derivatives as well as the regression function itself, and provides options to make the estimated regression function free from boundary effects and possess oracle properties. A comprehensive theory is presented for the proposed method, which includes the rates of convergence in various modes and the asymptotic distributions of the estimators. The efficiency of the proposed method is also demonstrated via simulation study and is illustrated through real data applications. 
650 4 |a Additive model 
650 4 |a Hilbert space 
650 4 |a local polynomial smoothing 
650 4 |a non-Euclidean data 
650 4 |a smooth backfitting 
700 1 |a Lee, Young Kyung  |e VerfasserIn  |4 aut 
700 1 |a Mammen, Enno  |d 1955-  |e VerfasserIn  |0 (DE-588)170668606  |0 (DE-627)060788658  |0 (DE-576)13153159X  |4 aut 
700 1 |a Park, Byeong U.  |e VerfasserIn  |0 (DE-588)170780023  |0 (DE-627)060912995  |0 (DE-576)131633414  |4 aut 
773 0 8 |i Enthalten in  |t Bernoulli  |d Aarhus : [Verlag nicht ermittelbar], 1995  |g 28(2022), 3, Seite 2034-2066  |h Online-Ressource  |w (DE-627)327395354  |w (DE-600)2044340-7  |w (DE-576)10266952X  |x 1573-9759  |7 nnas  |a Locally polynomial Hilbertian additive regression 
773 1 8 |g volume:28  |g year:2022  |g number:3  |g pages:2034-2066  |g extent:33  |a Locally polynomial Hilbertian additive regression 
856 4 0 |u https://doi.org/10.3150/21-BEJ1410  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://projecteuclid.org/journals/bernoulli/volume-28/issue-3/Locally-polynomial-Hilbertian-additive-regression/10.3150/21-BEJ1410.full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220714 
993 |a Article 
994 |a 2022 
998 |g 170668606  |a Mammen, Enno  |m 170668606:Mammen, Enno  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM170668606  |e 110200PM170668606  |e 110000PM170668606  |e 110400PM170668606  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 3 
999 |a KXP-PPN1810233984  |e 4165924326 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Jeon","display":"Jeon, Jeong Min","role":"aut","given":"Jeong Min"},{"family":"Lee","display":"Lee, Young Kyung","role":"aut","given":"Young Kyung"},{"family":"Mammen","display":"Mammen, Enno","role":"aut","given":"Enno"},{"family":"Park","display":"Park, Byeong U.","role":"aut","given":"Byeong U."}],"id":{"eki":["1810233984"],"doi":["10.3150/21-BEJ1410"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"relHost":[{"part":{"volume":"28","text":"28(2022), 3, Seite 2034-2066","year":"2022","extent":"33","issue":"3","pages":"2034-2066"},"disp":"Locally polynomial Hilbertian additive regressionBernoulli","corporate":[{"role":"isb","display":"Bernoulli Society for Mathematical Statistics and Probability"}],"title":[{"subtitle":"official journal of the Bernoulli Society for Mathematical Statistics and Probability","title":"Bernoulli","title_sort":"Bernoulli"}],"physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["327395354"],"issn":["1573-9759"],"zdb":["2044340-7"]},"origin":[{"publisherPlace":"Aarhus","dateIssuedDisp":"1995-","publisher":"[Verlag nicht ermittelbar]","dateIssuedKey":"1995"}],"note":["Gesehen am 30.05.2023"],"language":["eng"],"recId":"327395354","pubHistory":["1.1995 -"]}],"physDesc":[{"extent":"33 S."}],"title":[{"title_sort":"Locally polynomial Hilbertian additive regression","title":"Locally polynomial Hilbertian additive regression"}],"note":["Gesehen am 14.07.2022"],"language":["eng"],"recId":"1810233984","origin":[{"dateIssuedDisp":"August 2022","dateIssuedKey":"2022"}],"name":{"displayForm":["Jeong Min Jeon, Young Kyung Lee, Enno Mammen and Byeong U. Park"]}} 
SRT |a JEONJEONGMLOCALLYPOL2022