A rainbow blow-up lemma for almost optimally bounded edge-colourings

A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Koml\'os, S\'ark\"ozy and Szemer\'edi that applies to almost optimally bounded colourings. A corollary of this is that there exists a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ehard, Stefan (VerfasserIn) , Glock, Stefan (VerfasserIn) , Joos, Felix (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 23 Jul 2019
In: Arxiv
Year: 2019, Pages: 1-28
DOI:10.48550/arXiv.1907.09950
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1907.09950
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1907.09950
Volltext
Verfasserangaben:Stefan Ehard, Stefan Glock, and Felix Joos

MARC

LEADER 00000caa a2200000 c 4500
001 1810555507
003 DE-627
005 20220820223751.0
007 cr uuu---uuuuu
008 220715s2019 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.1907.09950  |2 doi 
035 |a (DE-627)1810555507 
035 |a (DE-599)KXP1810555507 
035 |a (OCoLC)1341463937 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Ehard, Stefan  |e VerfasserIn  |0 (DE-588)1226449379  |0 (DE-627)1747506230  |4 aut 
245 1 2 |a A rainbow blow-up lemma for almost optimally bounded edge-colourings  |c Stefan Ehard, Stefan Glock, and Felix Joos 
264 1 |c 23 Jul 2019 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.07.2022 
520 |a A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Koml\'os, S\'ark\"ozy and Szemer\'edi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph $H$ in a quasirandom host graph $G$, assuming that the edge-colouring of $G$ fulfills a boundedness condition that is asymptotically best possible. This has many applications beyond rainbow colourings, for example to graph decompositions, orthogonal double covers and graph labellings. 
650 4 |a Mathematics - Combinatorics 
700 1 |a Glock, Stefan  |e VerfasserIn  |0 (DE-588)1240918712  |0 (DE-627)1769994300  |4 aut 
700 1 |a Joos, Felix  |d 1989-  |e VerfasserIn  |0 (DE-588)1075006171  |0 (DE-627)832846244  |0 (DE-576)442747438  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2019), Artikel-ID 1907.09950, Seite 1-28  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a A rainbow blow-up lemma for almost optimally bounded edge-colourings 
773 1 8 |g year:2019  |g elocationid:1907.09950  |g pages:1-28  |g extent:28  |a A rainbow blow-up lemma for almost optimally bounded edge-colourings 
856 4 0 |u https://doi.org/10.48550/arXiv.1907.09950  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/1907.09950  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220715 
993 |a Article 
994 |a 2019 
998 |g 1075006171  |a Joos, Felix  |m 1075006171:Joos, Felix  |p 3  |y j 
999 |a KXP-PPN1810555507  |e 416671368X 
BIB |a Y 
JSO |a {"person":[{"given":"Stefan","family":"Ehard","role":"aut","roleDisplay":"VerfasserIn","display":"Ehard, Stefan"},{"family":"Glock","given":"Stefan","roleDisplay":"VerfasserIn","display":"Glock, Stefan","role":"aut"},{"family":"Joos","given":"Felix","display":"Joos, Felix","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title":"A rainbow blow-up lemma for almost optimally bounded edge-colourings","title_sort":"rainbow blow-up lemma for almost optimally bounded edge-colourings"}],"recId":"1810555507","language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Gesehen am 27.07.2022"],"name":{"displayForm":["Stefan Ehard, Stefan Glock, and Felix Joos"]},"id":{"doi":["10.48550/arXiv.1907.09950"],"eki":["1810555507"]},"origin":[{"dateIssuedDisp":"23 Jul 2019","dateIssuedKey":"2019"}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"part":{"extent":"28","text":"(2019), Artikel-ID 1907.09950, Seite 1-28","pages":"1-28","year":"2019"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"disp":"A rainbow blow-up lemma for almost optimally bounded edge-colouringsArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"28 S."}]} 
SRT |a EHARDSTEFARAINBOWBLO2320