A rainbow blow-up lemma for almost optimally bounded edge-colourings
A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Koml\'os, S\'ark\"ozy and Szemer\'edi that applies to almost optimally bounded colourings. A corollary of this is that there exists a...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
23 Jul 2019
|
| In: |
Arxiv
Year: 2019, Pages: 1-28 |
| DOI: | 10.48550/arXiv.1907.09950 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1907.09950 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1907.09950 |
| Verfasserangaben: | Stefan Ehard, Stefan Glock, and Felix Joos |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810555507 | ||
| 003 | DE-627 | ||
| 005 | 20220820223751.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220715s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.1907.09950 |2 doi | |
| 035 | |a (DE-627)1810555507 | ||
| 035 | |a (DE-599)KXP1810555507 | ||
| 035 | |a (OCoLC)1341463937 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Ehard, Stefan |e VerfasserIn |0 (DE-588)1226449379 |0 (DE-627)1747506230 |4 aut | |
| 245 | 1 | 2 | |a A rainbow blow-up lemma for almost optimally bounded edge-colourings |c Stefan Ehard, Stefan Glock, and Felix Joos |
| 264 | 1 | |c 23 Jul 2019 | |
| 300 | |a 28 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.07.2022 | ||
| 520 | |a A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Koml\'os, S\'ark\"ozy and Szemer\'edi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph $H$ in a quasirandom host graph $G$, assuming that the edge-colouring of $G$ fulfills a boundedness condition that is asymptotically best possible. This has many applications beyond rainbow colourings, for example to graph decompositions, orthogonal double covers and graph labellings. | ||
| 650 | 4 | |a Mathematics - Combinatorics | |
| 700 | 1 | |a Glock, Stefan |e VerfasserIn |0 (DE-588)1240918712 |0 (DE-627)1769994300 |4 aut | |
| 700 | 1 | |a Joos, Felix |d 1989- |e VerfasserIn |0 (DE-588)1075006171 |0 (DE-627)832846244 |0 (DE-576)442747438 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2019), Artikel-ID 1907.09950, Seite 1-28 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a A rainbow blow-up lemma for almost optimally bounded edge-colourings |
| 773 | 1 | 8 | |g year:2019 |g elocationid:1907.09950 |g pages:1-28 |g extent:28 |a A rainbow blow-up lemma for almost optimally bounded edge-colourings |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.1907.09950 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1907.09950 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220715 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1075006171 |a Joos, Felix |m 1075006171:Joos, Felix |p 3 |y j | ||
| 999 | |a KXP-PPN1810555507 |e 416671368X | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"given":"Stefan","family":"Ehard","role":"aut","roleDisplay":"VerfasserIn","display":"Ehard, Stefan"},{"family":"Glock","given":"Stefan","roleDisplay":"VerfasserIn","display":"Glock, Stefan","role":"aut"},{"family":"Joos","given":"Felix","display":"Joos, Felix","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title":"A rainbow blow-up lemma for almost optimally bounded edge-colourings","title_sort":"rainbow blow-up lemma for almost optimally bounded edge-colourings"}],"recId":"1810555507","language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Gesehen am 27.07.2022"],"name":{"displayForm":["Stefan Ehard, Stefan Glock, and Felix Joos"]},"id":{"doi":["10.48550/arXiv.1907.09950"],"eki":["1810555507"]},"origin":[{"dateIssuedDisp":"23 Jul 2019","dateIssuedKey":"2019"}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"part":{"extent":"28","text":"(2019), Artikel-ID 1907.09950, Seite 1-28","pages":"1-28","year":"2019"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"disp":"A rainbow blow-up lemma for almost optimally bounded edge-colouringsArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"28 S."}]} | ||
| SRT | |a EHARDSTEFARAINBOWBLO2320 | ||