A rainbow blow-up lemma for almost optimally bounded edge-colourings

A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Koml\'os, S\'ark\"ozy and Szemer\'edi that applies to almost optimally bounded colourings. A corollary of this is that there exists a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ehard, Stefan (VerfasserIn) , Glock, Stefan (VerfasserIn) , Joos, Felix (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 23 Jul 2019
In: Arxiv
Year: 2019, Pages: 1-28
DOI:10.48550/arXiv.1907.09950
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1907.09950
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1907.09950
Volltext
Verfasserangaben:Stefan Ehard, Stefan Glock, and Felix Joos
Beschreibung
Zusammenfassung:A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Koml\'os, S\'ark\"ozy and Szemer\'edi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph $H$ in a quasirandom host graph $G$, assuming that the edge-colouring of $G$ fulfills a boundedness condition that is asymptotically best possible. This has many applications beyond rainbow colourings, for example to graph decompositions, orthogonal double covers and graph labellings.
Beschreibung:Gesehen am 27.07.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.1907.09950