Euler tours in hypergraphs
We show that a quasirandom $k$-uniform hypergraph $G$ has a tight Euler tour subject to the necessary condition that $k$ divides all vertex degrees. The case when $G$ is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the $k$-subsets of...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
23 Aug 2018
|
| In: |
Arxiv
Year: 2018, Pages: 1-8 |
| DOI: | 10.48550/arXiv.1808.07720 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1808.07720 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1808.07720 |
| Author Notes: | Stefan Glock, Felix Joos, Daniela Kühn, and Deryk Osthus |
| Summary: | We show that a quasirandom $k$-uniform hypergraph $G$ has a tight Euler tour subject to the necessary condition that $k$ divides all vertex degrees. The case when $G$ is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the $k$-subsets of an $n$-set. |
|---|---|
| Item Description: | Identifizierung der Ressource nach: 10 Mar 2020 Gesehen am 15.07.2022 |
| Physical Description: | Online Resource |
| DOI: | 10.48550/arXiv.1808.07720 |