Euler tours in hypergraphs

We show that a quasirandom $k$-uniform hypergraph $G$ has a tight Euler tour subject to the necessary condition that $k$ divides all vertex degrees. The case when $G$ is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the $k$-subsets of...

Full description

Saved in:
Bibliographic Details
Main Authors: Glock, Stefan (Author) , Joos, Felix (Author) , Kühn, Daniela (Author) , Osthus, Deryk (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 23 Aug 2018
In: Arxiv
Year: 2018, Pages: 1-8
DOI:10.48550/arXiv.1808.07720
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1808.07720
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1808.07720
Get full text
Author Notes:Stefan Glock, Felix Joos, Daniela Kühn, and Deryk Osthus
Search Result 1

Euler tours in hypergraphs by Glock, Stefan (Author) , Joos, Felix (Author) , Kühn, Daniela (Author) , Osthus, Deryk (Author) ,


Get full text
Article (Journal) Online Resource