Spanning trees in randomly perturbed graphs

A classical result of Komlós, Sárközy, and Szemerédi states that every n-vertex graph with minimum degree at least (1/2 + o(1))n contains every n-vertex tree with maximum degree . Krivelevich, Kwan, and Sudakov proved that for every n-vertex graph Gα with minimum degree at least αn for any fixed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joos, Felix (VerfasserIn) , Kim, Jaehoon (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Random structures & algorithms
Year: 2020, Jahrgang: 56, Heft: 1, Pages: 169-219
ISSN:1098-2418
DOI:10.1002/rsa.20886
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/rsa.20886
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20886
Volltext
Verfasserangaben:Felix Joos, Jaehoon Kim

MARC

LEADER 00000caa a2200000 c 4500
001 181059734X
003 DE-627
005 20220820223827.0
007 cr uuu---uuuuu
008 220715s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/rsa.20886  |2 doi 
035 |a (DE-627)181059734X 
035 |a (DE-599)KXP181059734X 
035 |a (OCoLC)1341464039 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Joos, Felix  |d 1989-  |e VerfasserIn  |0 (DE-588)1075006171  |0 (DE-627)832846244  |0 (DE-576)442747438  |4 aut 
245 1 0 |a Spanning trees in randomly perturbed graphs  |c Felix Joos, Jaehoon Kim 
264 1 |c 2020 
300 |a 51 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published on: 17 October 2019 
500 |a Gesehen am 15.07.2022 
520 |a A classical result of Komlós, Sárközy, and Szemerédi states that every n-vertex graph with minimum degree at least (1/2 + o(1))n contains every n-vertex tree with maximum degree . Krivelevich, Kwan, and Sudakov proved that for every n-vertex graph Gα with minimum degree at least αn for any fixed α > 0 and every n-vertex tree T with bounded maximum degree, one can still find a copy of T in Gα with high probability after adding O(n) randomly chosen edges to Gα. We extend the latter results to trees with (essentially) unbounded maximum degree; for a given and α > 0, we determine up to a constant factor the number of random edges that we need to add to an arbitrary n-vertex graph with minimum degree αn in order to guarantee with high probability a copy of any fixed n-vertex tree with maximum degree at most Δ. 
650 4 |a graph embedding 
650 4 |a Random graphs 
650 4 |a trees 
700 1 |a Kim, Jaehoon  |e VerfasserIn  |0 (DE-588)1262517826  |0 (DE-627)1810217857  |4 aut 
773 0 8 |i Enthalten in  |t Random structures & algorithms  |d New York, NY [u.a.] : Wiley, 1990  |g 56(2020), 1, Seite 169-219  |h Online-Ressource  |w (DE-627)306711141  |w (DE-600)1500812-5  |w (DE-576)082436185  |x 1098-2418  |7 nnas  |a Spanning trees in randomly perturbed graphs 
773 1 8 |g volume:56  |g year:2020  |g number:1  |g pages:169-219  |g extent:51  |a Spanning trees in randomly perturbed graphs 
856 4 0 |u https://doi.org/10.1002/rsa.20886  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20886  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220715 
993 |a Article 
994 |a 2020 
998 |g 1075006171  |a Joos, Felix  |m 1075006171:Joos, Felix  |d 700000  |d 728500  |e 700000PJ1075006171  |e 728500PJ1075006171  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
999 |a KXP-PPN181059734X  |e 416679678X 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1002/rsa.20886"],"eki":["181059734X"]},"origin":[{"dateIssuedDisp":"2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Felix Joos, Jaehoon Kim"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"New York, NY [u.a.]","publisher":"Wiley","dateIssuedKey":"1990","dateIssuedDisp":"1990-"}],"id":{"zdb":["1500812-5"],"doi":["10.1002/(ISSN)1098-2418"],"eki":["306711141"],"issn":["1098-2418"]},"disp":"Spanning trees in randomly perturbed graphsRandom structures & algorithms","note":["Gesehen am 17.02.05"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"306711141","language":["eng"],"pubHistory":["1.1990 -"],"titleAlt":[{"title":"Random structures and algorithms"}],"part":{"text":"56(2020), 1, Seite 169-219","volume":"56","extent":"51","year":"2020","issue":"1","pages":"169-219"},"title":[{"title_sort":"Random structures & algorithms","title":"Random structures & algorithms"}]}],"physDesc":[{"extent":"51 S."}],"title":[{"title":"Spanning trees in randomly perturbed graphs","title_sort":"Spanning trees in randomly perturbed graphs"}],"person":[{"display":"Joos, Felix","roleDisplay":"VerfasserIn","role":"aut","family":"Joos","given":"Felix"},{"given":"Jaehoon","family":"Kim","role":"aut","display":"Kim, Jaehoon","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"181059734X","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Published on: 17 October 2019","Gesehen am 15.07.2022"]} 
SRT |a JOOSFELIXKSPANNINGTR2020