Optimal packings of bounded degree trees

We prove that if $T_1,\dots, T_n$ is a sequence of bounded degree trees so that $T_i$ has $i$ vertices, then $K_n$ has a decomposition into $T_1,\dots, T_n$. This shows that the tree packing conjecture of Gy\'arf\'as and Lehel from 1976 holds for all bounded degree trees (in fact, we can a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joos, Felix (VerfasserIn) , Kim, Jaehoon (VerfasserIn) , Kühn, Daniela (VerfasserIn) , Osthus, Deryk (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 13 Jun 2016
In: Arxiv
Year: 2016, Pages: 1-56
DOI:10.48550/arXiv.1606.03953
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1606.03953
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1606.03953
Volltext
Verfasserangaben:Felix Joos, Jaehoon Kim, Daniela Kühn, and Deryk Osthus
Beschreibung
Zusammenfassung:We prove that if $T_1,\dots, T_n$ is a sequence of bounded degree trees so that $T_i$ has $i$ vertices, then $K_n$ has a decomposition into $T_1,\dots, T_n$. This shows that the tree packing conjecture of Gy\'arf\'as and Lehel from 1976 holds for all bounded degree trees (in fact, we can allow the first $o(n)$ trees to have arbitrary degrees). Similarly, we show that Ringel's conjecture from 1963 holds for all bounded degree trees. We deduce these results from a more general theorem, which yields decompositions of dense quasi-random graphs into suitable families of bounded degree graphs. Our proofs involve Szemer\'{e}di's regularity lemma, results on Hamilton decompositions of robust expanders, random walks, iterative absorption as well as a recent blow-up lemma for approximate decompositions.
Beschreibung:Identifizierung der Ressource nach: 13 Mar 2019
Gesehen am 27.07.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.1606.03953