On Lyubeznik type invariants
We discuss for an affine variety Y embedded in affine space X two sets of integers attached to Y⊆X via local and de Rham cohomology spectral sequences. We investigate collapse of the spectral sequences, give topological interpretations, study them in small dimension, and consider to what extent one...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
17 May 2022
|
| In: |
Topology and its applications
Year: 2022, Volume: 313, Pages: 1-31 |
| DOI: | 10.1016/j.topol.2021.107983 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.topol.2021.107983 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0166864121004016 |
| Author Notes: | Thomas Reichelt, Uli Walther, Wenliang Zhang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810704022 | ||
| 003 | DE-627 | ||
| 005 | 20220820224445.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220718s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.topol.2021.107983 |2 doi | |
| 035 | |a (DE-627)1810704022 | ||
| 035 | |a (DE-599)KXP1810704022 | ||
| 035 | |a (OCoLC)1341464121 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Reichelt, Thomas |e VerfasserIn |0 (DE-588)1014841011 |0 (DE-627)667900969 |0 (DE-576)349739358 |4 aut | |
| 245 | 1 | 0 | |a On Lyubeznik type invariants |c Thomas Reichelt, Uli Walther, Wenliang Zhang |
| 264 | 1 | |c 17 May 2022 | |
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 18.07.2022 | ||
| 520 | |a We discuss for an affine variety Y embedded in affine space X two sets of integers attached to Y⊆X via local and de Rham cohomology spectral sequences. We investigate collapse of the spectral sequences, give topological interpretations, study them in small dimension, and consider to what extent one can attach them to projective varieties. | ||
| 650 | 4 | |a Čech-de Rham number | |
| 650 | 4 | |a D-module | |
| 650 | 4 | |a de Rham cohomology | |
| 650 | 4 | |a Eulerian | |
| 650 | 4 | |a Hodge-de Rham | |
| 650 | 4 | |a Local cohomology | |
| 650 | 4 | |a Lyubeznik number | |
| 650 | 4 | |a Perverse sheaf | |
| 700 | 1 | |a Walther, Uli |e VerfasserIn |4 aut | |
| 700 | 1 | |a Zhang, Wenliang |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Topology and its applications |d Amsterdam [u.a.] : Elsevier, 1980 |g 313(2022), Artikel-ID 107983, Seite 1-31 |h Online-Ressource |w (DE-627)306652862 |w (DE-600)1499758-7 |w (DE-576)081954425 |7 nnas |a On Lyubeznik type invariants |
| 773 | 1 | 8 | |g volume:313 |g year:2022 |g elocationid:107983 |g pages:1-31 |g extent:31 |a On Lyubeznik type invariants |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.topol.2021.107983 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0166864121004016 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220718 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1014841011 |a Reichelt, Thomas |m 1014841011:Reichelt, Thomas |d 110000 |e 110000PR1014841011 |k 0/110000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1810704022 |e 416941926X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Thomas","family":"Reichelt","role":"aut","display":"Reichelt, Thomas","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Walther, Uli","roleDisplay":"VerfasserIn","given":"Uli","family":"Walther"},{"given":"Wenliang","family":"Zhang","role":"aut","roleDisplay":"VerfasserIn","display":"Zhang, Wenliang"}],"title":[{"title":"On Lyubeznik type invariants","title_sort":"On Lyubeznik type invariants"}],"recId":"1810704022","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 18.07.2022"],"name":{"displayForm":["Thomas Reichelt, Uli Walther, Wenliang Zhang"]},"id":{"doi":["10.1016/j.topol.2021.107983"],"eki":["1810704022"]},"origin":[{"dateIssuedDisp":"17 May 2022","dateIssuedKey":"2022"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier","dateIssuedKey":"1980","dateIssuedDisp":"1980-"}],"id":{"eki":["306652862"],"zdb":["1499758-7"]},"pubHistory":["11.1980 - 160.2013; Vol. 161.2014 -"],"part":{"extent":"31","volume":"313","text":"313(2022), Artikel-ID 107983, Seite 1-31","pages":"1-31","year":"2022"},"disp":"On Lyubeznik type invariantsTopology and its applications","note":["Gesehen am 16.11.23"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"306652862","title":[{"title_sort":"Topology and its applications","subtitle":"a journal devoted to general, geometric, set-theoretic and algebraic topology","title":"Topology and its applications"}]}],"physDesc":[{"extent":"31 S."}]} | ||
| SRT | |a REICHELTTHONLYUBEZNI1720 | ||