Teaching neural networks to generate fast Sunyaev-Zel'dovich maps

The thermal Sunyaev-Zel’dovich (tSZ) and the kinematic Sunyaev-Zel’dovich (kSZ) effects trace the distribution of electron pressure and momentum in the hot universe. These observables depend on rich multiscale physics, thus, simulated maps should ideally be based on calculations that capture baryoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thiele, Leander (VerfasserIn) , Villaescusa-Navarro, Francisco (VerfasserIn) , Spergel, David N. (VerfasserIn) , Nelson, Dylan (VerfasserIn) , Pillepich, Annalisa (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020 October 21
In: The astrophysical journal
Year: 2020, Jahrgang: 902, Heft: 2, Pages: 1-15
ISSN:1538-4357
DOI:10.3847/1538-4357/abb80f
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3847/1538-4357/abb80f
Volltext
Verfasserangaben:Leander Thiele, Francisco Villaescusa-Navarro, David N. Spergel, Dylan Nelson, and Annalisa Pillepich

MARC

LEADER 00000caa a2200000 c 4500
001 1810990432
003 DE-627
005 20220820225744.0
007 cr uuu---uuuuu
008 220720s2020 xx |||||o 00| ||eng c
024 7 |a 10.3847/1538-4357/abb80f  |2 doi 
035 |a (DE-627)1810990432 
035 |a (DE-599)KXP1810990432 
035 |a (OCoLC)1341464258 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Thiele, Leander  |e VerfasserIn  |0 (DE-588)1263887260  |0 (DE-627)1811995314  |4 aut 
245 1 0 |a Teaching neural networks to generate fast Sunyaev-Zel'dovich maps  |c Leander Thiele, Francisco Villaescusa-Navarro, David N. Spergel, Dylan Nelson, and Annalisa Pillepich 
264 1 |c 2020 October 21 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.07.2022 
520 |a The thermal Sunyaev-Zel’dovich (tSZ) and the kinematic Sunyaev-Zel’dovich (kSZ) effects trace the distribution of electron pressure and momentum in the hot universe. These observables depend on rich multiscale physics, thus, simulated maps should ideally be based on calculations that capture baryonic feedback effects such as cooling, star formation, and other complex processes. In this paper, we train deep convolutional neural networks with a U-Net architecture to map from the three-dimensional distribution of dark matter to electron density, momentum, and pressure at ∼100 kpc resolution. These networks are trained on a combination of the TNG300 volume and a set of cluster zoom-in simulations from the IllustrisTNG project. The neural nets are able to reproduce the power spectrum, one-point probability distribution function, bispectrum, and cross-correlation coefficients of the simulations more accurately than the state-of-the-art semianalytical models. Our approach offers a route to capture the richness of a full cosmological hydrodynamical simulation of galaxy formation with the speed of an analytical calculation. 
700 1 |a Villaescusa-Navarro, Francisco  |e VerfasserIn  |0 (DE-588)1241779031  |0 (DE-627)1771706864  |4 aut 
700 1 |a Spergel, David N.  |d 1961-  |e VerfasserIn  |0 (DE-588)1078384274  |0 (DE-627)838457754  |0 (DE-576)451449770  |4 aut 
700 1 |a Nelson, Dylan  |e VerfasserIn  |0 (DE-588)115182805X  |0 (DE-627)101233600X  |0 (DE-576)42382581X  |4 aut 
700 1 |a Pillepich, Annalisa  |e VerfasserIn  |0 (DE-588)1151829854  |0 (DE-627)1012339327  |0 (DE-576)423800841  |4 aut 
773 0 8 |i Enthalten in  |t The astrophysical journal  |d London : Institute of Physics Publ., 1995  |g 902(2020), 2, Artikel-ID 129, Seite 1-15  |h Online-Ressource  |w (DE-627)269019219  |w (DE-600)1473835-1  |w (DE-576)077662733  |x 1538-4357  |7 nnas  |a Teaching neural networks to generate fast Sunyaev-Zel'dovich maps 
773 1 8 |g volume:902  |g year:2020  |g number:2  |g elocationid:129  |g pages:1-15  |g extent:15  |a Teaching neural networks to generate fast Sunyaev-Zel'dovich maps 
856 4 0 |u https://doi.org/10.3847/1538-4357/abb80f  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220720 
993 |a Article 
994 |a 2020 
998 |g 1151829854  |a Pillepich, Annalisa  |m 1151829854:Pillepich, Annalisa  |d 130000  |d 700000  |d 728500  |e 130000PP1151829854  |e 700000PP1151829854  |e 728500PP1151829854  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 5  |y j 
998 |g 115182805X  |a Nelson, Dylan  |m 115182805X:Nelson, Dylan  |d 700000  |d 728500  |e 700000PN115182805X  |e 728500PN115182805X  |k 0/700000/  |k 1/700000/728500/  |p 4 
999 |a KXP-PPN1810990432  |e 4170704479 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Leander Thiele, Francisco Villaescusa-Navarro, David N. Spergel, Dylan Nelson, and Annalisa Pillepich"]},"origin":[{"dateIssuedDisp":"2020 October 21","dateIssuedKey":"2020"}],"note":["Gesehen am 29.07.2022"],"language":["eng"],"recId":"1810990432","person":[{"display":"Thiele, Leander","family":"Thiele","given":"Leander","role":"aut"},{"family":"Villaescusa-Navarro","display":"Villaescusa-Navarro, Francisco","role":"aut","given":"Francisco"},{"family":"Spergel","display":"Spergel, David N.","role":"aut","given":"David N."},{"display":"Nelson, Dylan","family":"Nelson","given":"Dylan","role":"aut"},{"family":"Pillepich","display":"Pillepich, Annalisa","role":"aut","given":"Annalisa"}],"relHost":[{"id":{"issn":["1538-4357"],"eki":["269019219"],"zdb":["1473835-1"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"The astrophysical journal","title_sort":"astrophysical journal","subtitle":"an international review of spectroscopy and astronomical physics"}],"titleAlt":[{"title":"The astrophysical journal / 1"},{"title":"ApJ"}],"disp":"Teaching neural networks to generate fast Sunyaev-Zel'dovich mapsThe astrophysical journal","part":{"issue":"2","pages":"1-15","text":"902(2020), 2, Artikel-ID 129, Seite 1-15","year":"2020","volume":"902","extent":"15"},"pubHistory":["Vol. 447 (1995) [?]-"],"name":{"displayForm":["publ. in coll. with the American Astronomical Society. S. Chandrasekhar, managing ed"]},"recId":"269019219","language":["eng"],"note":["Gesehen am 18.01.2022","Fortsetzung der Druck-Ausgabe"],"origin":[{"publisherPlace":"London ; Chicago, Ill. [u.a.]","dateIssuedDisp":"[1995?]-","publisher":"Institute of Physics Publ. ; Univ. of Chicago Press"}]}],"title":[{"title_sort":"Teaching neural networks to generate fast Sunyaev-Zel'dovich maps","title":"Teaching neural networks to generate fast Sunyaev-Zel'dovich maps"}],"physDesc":[{"extent":"15 S."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1810990432"],"doi":["10.3847/1538-4357/abb80f"]}} 
SRT |a THIELELEANTEACHINGNE2020