Identifying kinematic structures in simulated galaxies using unsupervised machine learning
Galaxies host a wide array of internal stellar components, which need to be decomposed accurately in order to understand their formation and evolution. While significant progress has been made with recent integral-field spectroscopic surveys of nearby galaxies, much can be learned from analyzing the...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2019 October 18
|
| In: |
The astrophysical journal
Year: 2019, Volume: 884, Issue: 2, Pages: 1-11 |
| ISSN: | 1538-4357 |
| DOI: | 10.3847/1538-4357/ab43cc |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3847/1538-4357/ab43cc |
| Author Notes: | Min Du, Luis C. Ho, Dongyao Zhao, Jingjing Shi, Victor P. Debattista, Lars Hernquist, and Dylan Nelson |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1810999472 | ||
| 003 | DE-627 | ||
| 005 | 20220820230016.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220720s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3847/1538-4357/ab43cc |2 doi | |
| 035 | |a (DE-627)1810999472 | ||
| 035 | |a (DE-599)KXP1810999472 | ||
| 035 | |a (OCoLC)1341464055 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Du, Min |e VerfasserIn |0 (DE-588)126388105X |0 (DE-627)1811986161 |4 aut | |
| 245 | 1 | 0 | |a Identifying kinematic structures in simulated galaxies using unsupervised machine learning |c Min Du, Luis C. Ho, Dongyao Zhao, Jingjing Shi, Victor P. Debattista, Lars Hernquist, and Dylan Nelson |
| 264 | 1 | |c 2019 October 18 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.07.2022 | ||
| 520 | |a Galaxies host a wide array of internal stellar components, which need to be decomposed accurately in order to understand their formation and evolution. While significant progress has been made with recent integral-field spectroscopic surveys of nearby galaxies, much can be learned from analyzing the large sets of realistic galaxies now available through state-of-the-art hydrodynamical cosmological simulations. We present an unsupervised machine-learning algorithm, named auto-GMM, based on Gaussian mixture models, to isolate intrinsic structures in simulated galaxies based on their kinematic phase space. For each galaxy, the number of Gaussian components allowed by the data is determined through a modified Bayesian information criterion. We test our method by applying it to prototype galaxies selected from the cosmological simulation IllustrisTNG. Our method can effectively decompose most galactic structures. The intrinsic structures of simulated galaxies can be inferred statistically by non-human supervised identification of galaxy structures. We successfully identify four kinds of intrinsic structures: cold disks, warm disks, bulges, and halos. Our method fails for barred galaxies because of the complex kinematics of particles moving on bar orbits. | ||
| 700 | 1 | |a Ho, Luis C. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Zhao, Dongyao |e VerfasserIn |4 aut | |
| 700 | 1 | |a Shi, Jingjing |d 1989- |e VerfasserIn |0 (DE-588)1218983876 |0 (DE-627)1734616636 |4 aut | |
| 700 | 1 | |a Debattista, Victor P. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Hernquist, Lars |d 1954- |e VerfasserIn |0 (DE-588)1264244401 |0 (DE-627)1813088241 |4 aut | |
| 700 | 1 | |a Nelson, Dylan |e VerfasserIn |0 (DE-588)115182805X |0 (DE-627)101233600X |0 (DE-576)42382581X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t The astrophysical journal |d London : Institute of Physics Publ., 1995 |g 884(2019), 2, Artikel-ID 129, Seite 1-11 |h Online-Ressource |w (DE-627)269019219 |w (DE-600)1473835-1 |w (DE-576)077662733 |x 1538-4357 |7 nnas |a Identifying kinematic structures in simulated galaxies using unsupervised machine learning |
| 773 | 1 | 8 | |g volume:884 |g year:2019 |g number:2 |g elocationid:129 |g pages:1-11 |g extent:11 |a Identifying kinematic structures in simulated galaxies using unsupervised machine learning |
| 856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ab43cc |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220720 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1218983876 |a Shi, Jingjing |m 1218983876:Shi, Jingjing |d 140000 |e 140000PS1218983876 |k 0/140000/ |p 4 | ||
| 998 | |g 115182805X |a Nelson, Dylan |m 115182805X:Nelson, Dylan |d 700000 |d 728500 |e 700000PN115182805X |e 728500PN115182805X |k 0/700000/ |k 1/700000/728500/ |p 7 |y j | ||
| 999 | |a KXP-PPN1810999472 |e 4171072131 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Min","role":"aut","display":"Du, Min","family":"Du"},{"given":"Luis C.","role":"aut","display":"Ho, Luis C.","family":"Ho"},{"display":"Zhao, Dongyao","family":"Zhao","given":"Dongyao","role":"aut"},{"given":"Jingjing","role":"aut","display":"Shi, Jingjing","family":"Shi"},{"family":"Debattista","display":"Debattista, Victor P.","role":"aut","given":"Victor P."},{"given":"Lars","role":"aut","display":"Hernquist, Lars","family":"Hernquist"},{"display":"Nelson, Dylan","family":"Nelson","given":"Dylan","role":"aut"}],"id":{"doi":["10.3847/1538-4357/ab43cc"],"eki":["1810999472"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"origin":[{"publisherPlace":"London ; Chicago, Ill. [u.a.]","dateIssuedDisp":"[1995?]-","publisher":"Institute of Physics Publ. ; Univ. of Chicago Press"}],"language":["eng"],"recId":"269019219","note":["Gesehen am 18.01.2022","Fortsetzung der Druck-Ausgabe"],"name":{"displayForm":["publ. in coll. with the American Astronomical Society. S. Chandrasekhar, managing ed"]},"pubHistory":["Vol. 447 (1995) [?]-"],"disp":"Identifying kinematic structures in simulated galaxies using unsupervised machine learningThe astrophysical journal","titleAlt":[{"title":"The astrophysical journal / 1"},{"title":"ApJ"}],"part":{"issue":"2","pages":"1-11","year":"2019","text":"884(2019), 2, Artikel-ID 129, Seite 1-11","volume":"884","extent":"11"},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"astrophysical journal","title":"The astrophysical journal","subtitle":"an international review of spectroscopy and astronomical physics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["1473835-1"],"issn":["1538-4357"],"eki":["269019219"]}}],"title":[{"title":"Identifying kinematic structures in simulated galaxies using unsupervised machine learning","title_sort":"Identifying kinematic structures in simulated galaxies using unsupervised machine learning"}],"physDesc":[{"extent":"11 S."}],"name":{"displayForm":["Min Du, Luis C. Ho, Dongyao Zhao, Jingjing Shi, Victor P. Debattista, Lars Hernquist, and Dylan Nelson"]},"language":["eng"],"recId":"1810999472","note":["Gesehen am 29.07.2022"],"origin":[{"dateIssuedDisp":"2019 October 18","dateIssuedKey":"2019"}]} | ||
| SRT | |a DUMINHOLUIIDENTIFYIN2019 | ||