Identifying kinematic structures in simulated galaxies using unsupervised machine learning

Galaxies host a wide array of internal stellar components, which need to be decomposed accurately in order to understand their formation and evolution. While significant progress has been made with recent integral-field spectroscopic surveys of nearby galaxies, much can be learned from analyzing the...

Full description

Saved in:
Bibliographic Details
Main Authors: Du, Min (Author) , Ho, Luis C. (Author) , Zhao, Dongyao (Author) , Shi, Jingjing (Author) , Debattista, Victor P. (Author) , Hernquist, Lars (Author) , Nelson, Dylan (Author)
Format: Article (Journal)
Language:English
Published: 2019 October 18
In: The astrophysical journal
Year: 2019, Volume: 884, Issue: 2, Pages: 1-11
ISSN:1538-4357
DOI:10.3847/1538-4357/ab43cc
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3847/1538-4357/ab43cc
Get full text
Author Notes:Min Du, Luis C. Ho, Dongyao Zhao, Jingjing Shi, Victor P. Debattista, Lars Hernquist, and Dylan Nelson

MARC

LEADER 00000caa a2200000 c 4500
001 1810999472
003 DE-627
005 20220820230016.0
007 cr uuu---uuuuu
008 220720s2019 xx |||||o 00| ||eng c
024 7 |a 10.3847/1538-4357/ab43cc  |2 doi 
035 |a (DE-627)1810999472 
035 |a (DE-599)KXP1810999472 
035 |a (OCoLC)1341464055 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Du, Min  |e VerfasserIn  |0 (DE-588)126388105X  |0 (DE-627)1811986161  |4 aut 
245 1 0 |a Identifying kinematic structures in simulated galaxies using unsupervised machine learning  |c Min Du, Luis C. Ho, Dongyao Zhao, Jingjing Shi, Victor P. Debattista, Lars Hernquist, and Dylan Nelson 
264 1 |c 2019 October 18 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.07.2022 
520 |a Galaxies host a wide array of internal stellar components, which need to be decomposed accurately in order to understand their formation and evolution. While significant progress has been made with recent integral-field spectroscopic surveys of nearby galaxies, much can be learned from analyzing the large sets of realistic galaxies now available through state-of-the-art hydrodynamical cosmological simulations. We present an unsupervised machine-learning algorithm, named auto-GMM, based on Gaussian mixture models, to isolate intrinsic structures in simulated galaxies based on their kinematic phase space. For each galaxy, the number of Gaussian components allowed by the data is determined through a modified Bayesian information criterion. We test our method by applying it to prototype galaxies selected from the cosmological simulation IllustrisTNG. Our method can effectively decompose most galactic structures. The intrinsic structures of simulated galaxies can be inferred statistically by non-human supervised identification of galaxy structures. We successfully identify four kinds of intrinsic structures: cold disks, warm disks, bulges, and halos. Our method fails for barred galaxies because of the complex kinematics of particles moving on bar orbits. 
700 1 |a Ho, Luis C.  |e VerfasserIn  |4 aut 
700 1 |a Zhao, Dongyao  |e VerfasserIn  |4 aut 
700 1 |a Shi, Jingjing  |d 1989-  |e VerfasserIn  |0 (DE-588)1218983876  |0 (DE-627)1734616636  |4 aut 
700 1 |a Debattista, Victor P.  |e VerfasserIn  |4 aut 
700 1 |a Hernquist, Lars  |d 1954-  |e VerfasserIn  |0 (DE-588)1264244401  |0 (DE-627)1813088241  |4 aut 
700 1 |a Nelson, Dylan  |e VerfasserIn  |0 (DE-588)115182805X  |0 (DE-627)101233600X  |0 (DE-576)42382581X  |4 aut 
773 0 8 |i Enthalten in  |t The astrophysical journal  |d London : Institute of Physics Publ., 1995  |g 884(2019), 2, Artikel-ID 129, Seite 1-11  |h Online-Ressource  |w (DE-627)269019219  |w (DE-600)1473835-1  |w (DE-576)077662733  |x 1538-4357  |7 nnas  |a Identifying kinematic structures in simulated galaxies using unsupervised machine learning 
773 1 8 |g volume:884  |g year:2019  |g number:2  |g elocationid:129  |g pages:1-11  |g extent:11  |a Identifying kinematic structures in simulated galaxies using unsupervised machine learning 
856 4 0 |u https://doi.org/10.3847/1538-4357/ab43cc  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220720 
993 |a Article 
994 |a 2019 
998 |g 1218983876  |a Shi, Jingjing  |m 1218983876:Shi, Jingjing  |d 140000  |e 140000PS1218983876  |k 0/140000/  |p 4 
998 |g 115182805X  |a Nelson, Dylan  |m 115182805X:Nelson, Dylan  |d 700000  |d 728500  |e 700000PN115182805X  |e 728500PN115182805X  |k 0/700000/  |k 1/700000/728500/  |p 7  |y j 
999 |a KXP-PPN1810999472  |e 4171072131 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Min","role":"aut","display":"Du, Min","family":"Du"},{"given":"Luis C.","role":"aut","display":"Ho, Luis C.","family":"Ho"},{"display":"Zhao, Dongyao","family":"Zhao","given":"Dongyao","role":"aut"},{"given":"Jingjing","role":"aut","display":"Shi, Jingjing","family":"Shi"},{"family":"Debattista","display":"Debattista, Victor P.","role":"aut","given":"Victor P."},{"given":"Lars","role":"aut","display":"Hernquist, Lars","family":"Hernquist"},{"display":"Nelson, Dylan","family":"Nelson","given":"Dylan","role":"aut"}],"id":{"doi":["10.3847/1538-4357/ab43cc"],"eki":["1810999472"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"origin":[{"publisherPlace":"London ; Chicago, Ill. [u.a.]","dateIssuedDisp":"[1995?]-","publisher":"Institute of Physics Publ. ; Univ. of Chicago Press"}],"language":["eng"],"recId":"269019219","note":["Gesehen am 18.01.2022","Fortsetzung der Druck-Ausgabe"],"name":{"displayForm":["publ. in coll. with the American Astronomical Society. S. Chandrasekhar, managing ed"]},"pubHistory":["Vol. 447 (1995) [?]-"],"disp":"Identifying kinematic structures in simulated galaxies using unsupervised machine learningThe astrophysical journal","titleAlt":[{"title":"The astrophysical journal / 1"},{"title":"ApJ"}],"part":{"issue":"2","pages":"1-11","year":"2019","text":"884(2019), 2, Artikel-ID 129, Seite 1-11","volume":"884","extent":"11"},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"astrophysical journal","title":"The astrophysical journal","subtitle":"an international review of spectroscopy and astronomical physics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["1473835-1"],"issn":["1538-4357"],"eki":["269019219"]}}],"title":[{"title":"Identifying kinematic structures in simulated galaxies using unsupervised machine learning","title_sort":"Identifying kinematic structures in simulated galaxies using unsupervised machine learning"}],"physDesc":[{"extent":"11 S."}],"name":{"displayForm":["Min Du, Luis C. Ho, Dongyao Zhao, Jingjing Shi, Victor P. Debattista, Lars Hernquist, and Dylan Nelson"]},"language":["eng"],"recId":"1810999472","note":["Gesehen am 29.07.2022"],"origin":[{"dateIssuedDisp":"2019 October 18","dateIssuedKey":"2019"}]} 
SRT |a DUMINHOLUIIDENTIFYIN2019