Bayesian probabilistic modeling for four-top production at the LHC

Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alvarez, Ezequiel (VerfasserIn) , Dillon, Barry M. (VerfasserIn) , Faroughy, Darius A. (VerfasserIn) , Kamenik, Jernej F. (VerfasserIn) , Lamagna, Federico (VerfasserIn) , Szewc, Manuel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 5 May 2022
In: Physical review
Year: 2022, Jahrgang: 105, Heft: 9, Pages: 1-11
ISSN:2470-0029
DOI:10.1103/PhysRevD.105.092001
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.105.092001
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.105.092001
Volltext
Verfasserangaben:Ezequiel Alvarez, Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Federico Lamagna, Manuel Szewc

MARC

LEADER 00000caa a2200000 c 4500
001 1811000045
003 DE-627
005 20220820230028.0
007 cr uuu---uuuuu
008 220720s2022 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevD.105.092001  |2 doi 
035 |a (DE-627)1811000045 
035 |a (DE-599)KXP1811000045 
035 |a (OCoLC)1341463873 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Alvarez, Ezequiel  |d 1976-  |e VerfasserIn  |0 (DE-588)1263023002  |0 (DE-627)1811005136  |4 aut 
245 1 0 |a Bayesian probabilistic modeling for four-top production at the LHC  |c Ezequiel Alvarez, Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Federico Lamagna, Manuel Szewc 
264 1 |c 5 May 2022 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 20.07.2022 
520 |a Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→t¯tt¯t with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables—the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic t¯tt¯t search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra. 
700 1 |a Dillon, Barry M.  |e VerfasserIn  |0 (DE-588)1243203412  |0 (DE-627)1773856952  |4 aut 
700 1 |a Faroughy, Darius A.  |e VerfasserIn  |4 aut 
700 1 |a Kamenik, Jernej F.  |e VerfasserIn  |4 aut 
700 1 |a Lamagna, Federico  |e VerfasserIn  |4 aut 
700 1 |a Szewc, Manuel  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Ridge, NY : American Physical Society, 2016  |g 105(2022), 9, Artikel-ID 092001, Seite 1-11  |h Online-Ressource  |w (DE-627)846313510  |w (DE-600)2844732-3  |w (DE-576)454495811  |x 2470-0029  |7 nnas  |a Bayesian probabilistic modeling for four-top production at the LHC 
773 1 8 |g volume:105  |g year:2022  |g number:9  |g elocationid:092001  |g pages:1-11  |g extent:11  |a Bayesian probabilistic modeling for four-top production at the LHC 
856 4 0 |u https://doi.org/10.1103/PhysRevD.105.092001  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevD.105.092001  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220720 
993 |a Article 
994 |a 2022 
998 |g 1243203412  |a Dillon, Barry M.  |m 1243203412:Dillon, Barry M.  |d 130000  |d 130300  |e 130000PD1243203412  |e 130300PD1243203412  |k 0/130000/  |k 1/130000/130300/  |p 2 
999 |a KXP-PPN1811000045  |e 417108461X 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1811000045","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 20.07.2022"],"title":[{"title":"Bayesian probabilistic modeling for four-top production at the LHC","title_sort":"Bayesian probabilistic modeling for four-top production at the LHC"}],"person":[{"family":"Alvarez","given":"Ezequiel","display":"Alvarez, Ezequiel","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Dillon, Barry M.","role":"aut","family":"Dillon","given":"Barry M."},{"display":"Faroughy, Darius A.","roleDisplay":"VerfasserIn","role":"aut","family":"Faroughy","given":"Darius A."},{"family":"Kamenik","given":"Jernej F.","roleDisplay":"VerfasserIn","display":"Kamenik, Jernej F.","role":"aut"},{"given":"Federico","family":"Lamagna","role":"aut","roleDisplay":"VerfasserIn","display":"Lamagna, Federico"},{"given":"Manuel","family":"Szewc","role":"aut","roleDisplay":"VerfasserIn","display":"Szewc, Manuel"}],"relHost":[{"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"part":{"year":"2022","issue":"9","pages":"1-11","volume":"105","text":"105(2022), 9, Artikel-ID 092001, Seite 1-11","extent":"11"},"disp":"Bayesian probabilistic modeling for four-top production at the LHCPhysical review","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.03.2023"],"language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Physical Society","role":"isb"}],"recId":"846313510","title":[{"title_sort":"Physical review","title":"Physical review"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2016","publisher":"American Physical Society","dateIssuedDisp":"2016-","publisherPlace":"Ridge, NY"}],"id":{"issn":["2470-0029"],"eki":["846313510"],"zdb":["2844732-3"]},"name":{"displayForm":["published by American Physical Society"]}}],"physDesc":[{"extent":"11 S."}],"id":{"doi":["10.1103/PhysRevD.105.092001"],"eki":["1811000045"]},"origin":[{"dateIssuedDisp":"5 May 2022","dateIssuedKey":"2022"}],"name":{"displayForm":["Ezequiel Alvarez, Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Federico Lamagna, Manuel Szewc"]}} 
SRT |a ALVAREZEZEBAYESIANPR5202