Bayesian probabilistic modeling for four-top production at the LHC
Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare ph...
Gespeichert in:
| Hauptverfasser: | , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
5 May 2022
|
| In: |
Physical review
Year: 2022, Jahrgang: 105, Heft: 9, Pages: 1-11 |
| ISSN: | 2470-0029 |
| DOI: | 10.1103/PhysRevD.105.092001 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.105.092001 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.105.092001 |
| Verfasserangaben: | Ezequiel Alvarez, Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Federico Lamagna, Manuel Szewc |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1811000045 | ||
| 003 | DE-627 | ||
| 005 | 20220820230028.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220720s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevD.105.092001 |2 doi | |
| 035 | |a (DE-627)1811000045 | ||
| 035 | |a (DE-599)KXP1811000045 | ||
| 035 | |a (OCoLC)1341463873 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Alvarez, Ezequiel |d 1976- |e VerfasserIn |0 (DE-588)1263023002 |0 (DE-627)1811005136 |4 aut | |
| 245 | 1 | 0 | |a Bayesian probabilistic modeling for four-top production at the LHC |c Ezequiel Alvarez, Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Federico Lamagna, Manuel Szewc |
| 264 | 1 | |c 5 May 2022 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 20.07.2022 | ||
| 520 | |a Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→t¯tt¯t with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables—the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic t¯tt¯t search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra. | ||
| 700 | 1 | |a Dillon, Barry M. |e VerfasserIn |0 (DE-588)1243203412 |0 (DE-627)1773856952 |4 aut | |
| 700 | 1 | |a Faroughy, Darius A. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kamenik, Jernej F. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Lamagna, Federico |e VerfasserIn |4 aut | |
| 700 | 1 | |a Szewc, Manuel |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Ridge, NY : American Physical Society, 2016 |g 105(2022), 9, Artikel-ID 092001, Seite 1-11 |h Online-Ressource |w (DE-627)846313510 |w (DE-600)2844732-3 |w (DE-576)454495811 |x 2470-0029 |7 nnas |a Bayesian probabilistic modeling for four-top production at the LHC |
| 773 | 1 | 8 | |g volume:105 |g year:2022 |g number:9 |g elocationid:092001 |g pages:1-11 |g extent:11 |a Bayesian probabilistic modeling for four-top production at the LHC |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevD.105.092001 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevD.105.092001 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220720 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1243203412 |a Dillon, Barry M. |m 1243203412:Dillon, Barry M. |d 130000 |d 130300 |e 130000PD1243203412 |e 130300PD1243203412 |k 0/130000/ |k 1/130000/130300/ |p 2 | ||
| 999 | |a KXP-PPN1811000045 |e 417108461X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1811000045","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 20.07.2022"],"title":[{"title":"Bayesian probabilistic modeling for four-top production at the LHC","title_sort":"Bayesian probabilistic modeling for four-top production at the LHC"}],"person":[{"family":"Alvarez","given":"Ezequiel","display":"Alvarez, Ezequiel","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Dillon, Barry M.","role":"aut","family":"Dillon","given":"Barry M."},{"display":"Faroughy, Darius A.","roleDisplay":"VerfasserIn","role":"aut","family":"Faroughy","given":"Darius A."},{"family":"Kamenik","given":"Jernej F.","roleDisplay":"VerfasserIn","display":"Kamenik, Jernej F.","role":"aut"},{"given":"Federico","family":"Lamagna","role":"aut","roleDisplay":"VerfasserIn","display":"Lamagna, Federico"},{"given":"Manuel","family":"Szewc","role":"aut","roleDisplay":"VerfasserIn","display":"Szewc, Manuel"}],"relHost":[{"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"part":{"year":"2022","issue":"9","pages":"1-11","volume":"105","text":"105(2022), 9, Artikel-ID 092001, Seite 1-11","extent":"11"},"disp":"Bayesian probabilistic modeling for four-top production at the LHCPhysical review","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.03.2023"],"language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Physical Society","role":"isb"}],"recId":"846313510","title":[{"title_sort":"Physical review","title":"Physical review"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2016","publisher":"American Physical Society","dateIssuedDisp":"2016-","publisherPlace":"Ridge, NY"}],"id":{"issn":["2470-0029"],"eki":["846313510"],"zdb":["2844732-3"]},"name":{"displayForm":["published by American Physical Society"]}}],"physDesc":[{"extent":"11 S."}],"id":{"doi":["10.1103/PhysRevD.105.092001"],"eki":["1811000045"]},"origin":[{"dateIssuedDisp":"5 May 2022","dateIssuedKey":"2022"}],"name":{"displayForm":["Ezequiel Alvarez, Barry M. Dillon, Darius A. Faroughy, Jernej F. Kamenik, Federico Lamagna, Manuel Szewc"]}} | ||
| SRT | |a ALVAREZEZEBAYESIANPR5202 | ||