On a rainbow version of Dirac's theorem
For a collection $\mathbf{G}=\{G_1,\dots, G_s\}$ of not necessarily distinct graphs on the same vertex set $V$, a graph $H$ with vertices in $V$ is a $\mathbf{G}$-transversal if there exists a bijection $\phi:E(H)\rightarrow [s]$ such that $e\in E(G_{\phi(e)})$ for all $e\in E(H)$. We prove that for...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
19 May 2020
|
| In: |
Bulletin of the London Mathematical Society
Year: 2020, Jahrgang: 52, Heft: 3, Pages: 498-504 |
| ISSN: | 1469-2120 |
| Online-Zugang: |
|
| Verfasserangaben: | Felix Joos and Jaehoon Kim |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1811803822 | ||
| 003 | DE-627 | ||
| 005 | 20220820232710.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220727s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/blms.12343 |2 doi | |
| 035 | |a (DE-627)1811803822 | ||
| 035 | |a (DE-599)KXP1811803822 | ||
| 035 | |a (OCoLC)1341464547 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Joos, Felix |d 1989- |e VerfasserIn |0 (DE-588)1075006171 |0 (DE-627)832846244 |0 (DE-576)442747438 |4 aut | |
| 245 | 1 | 0 | |a On a rainbow version of Dirac's theorem |c Felix Joos and Jaehoon Kim |
| 264 | 1 | |c 19 May 2020 | |
| 300 | |a 7 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.07.2022 | ||
| 520 | |a For a collection $\mathbf{G}=\{G_1,\dots, G_s\}$ of not necessarily distinct graphs on the same vertex set $V$, a graph $H$ with vertices in $V$ is a $\mathbf{G}$-transversal if there exists a bijection $\phi:E(H)\rightarrow [s]$ such that $e\in E(G_{\phi(e)})$ for all $e\in E(H)$. We prove that for $|V|=s\geq 3$ and $\delta(G_i)\geq s/2$ for each $i\in [s]$, there exists a $\mathbf{G}$-transversal that is a Hamilton cycle. This confirms a conjecture of Aharoni. We also prove an analogous result for perfect matchings. | ||
| 650 | 4 | |a Mathematics - Combinatorics | |
| 700 | 1 | |a Kim, Jaehoon |e VerfasserIn |0 (DE-588)1262517826 |0 (DE-627)1810217857 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a London Mathematical Society |t Bulletin of the London Mathematical Society |d Hoboken, NJ : Wiley, 1969 |g 52(2020), 3, Seite 498-504 |h Online-Ressource |w (DE-627)270132023 |w (DE-600)1476985-2 |w (DE-576)078129966 |x 1469-2120 |7 nnas |
| 773 | 1 | 8 | |g volume:52 |g year:2020 |g number:3 |g pages:498-504 |g extent:7 |a On a rainbow version of Dirac's theorem |
| 951 | |a AR | ||
| 992 | |a 20220727 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1075006171 |a Joos, Felix |m 1075006171:Joos, Felix |d 110000 |d 110300 |d 700000 |d 728500 |e 110000PJ1075006171 |e 110300PJ1075006171 |e 700000PJ1075006171 |e 728500PJ1075006171 |k 0/110000/ |k 1/110000/110300/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1811803822 |e 4173117612 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"recId":"270132023","corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"London Mathematical Society"}],"language":["eng"],"disp":"London Mathematical SocietyBulletin of the London Mathematical Society","note":["Gesehen am 31.08.20"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2020","issue":"3","pages":"498-504","text":"52(2020), 3, Seite 498-504","volume":"52","extent":"7"},"pubHistory":["1.1969 -"],"title":[{"title":"Bulletin of the London Mathematical Society","title_sort":"Bulletin of the London Mathematical Society"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1469-2120"],"zdb":["1476985-2"],"doi":["10.1112/(ISSN)1469-2120"],"eki":["270132023"]},"origin":[{"dateIssuedDisp":"1969-","dateIssuedKey":"1969","publisher":"Wiley ; Cambridge Univ. Press ; Oxford Univ. Press","publisherPlace":"Hoboken, NJ ; Cambridge ; Oxford"}]}],"physDesc":[{"extent":"7 S."}],"name":{"displayForm":["Felix Joos and Jaehoon Kim"]},"id":{"doi":["10.1112/blms.12343"],"eki":["1811803822"]},"origin":[{"dateIssuedDisp":"19 May 2020","dateIssuedKey":"2020"}],"language":["eng"],"recId":"1811803822","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 27.07.2022"],"person":[{"family":"Joos","given":"Felix","roleDisplay":"VerfasserIn","display":"Joos, Felix","role":"aut"},{"given":"Jaehoon","family":"Kim","role":"aut","roleDisplay":"VerfasserIn","display":"Kim, Jaehoon"}],"title":[{"title_sort":"On a rainbow version of Dirac's theorem","title":"On a rainbow version of Dirac's theorem"}]} | ||
| SRT | |a JOOSFELIXKONARAINBOW1920 | ||