Homogenization of a nonlinear drift-diffusion system for multiple charged species in a porous medium

We consider a nonlinear drift-diffusion system for multiple charged species in a porous medium in 2D and 3D with periodic microstructure. The system consists of a transport equation for the concentration of the species and Poisson’s equation for the electric potential. The diffusion terms depend non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhattacharya, Apratim (VerfasserIn) , Gahn, Markus (VerfasserIn) , Neuss-Radu, Maria (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 June 2022
In: Nonlinear analysis. Real world applications
Year: 2022, Jahrgang: 68, Pages: 1-28
DOI:10.1016/j.nonrwa.2022.103651
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.nonrwa.2022.103651
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1468121822000797
Volltext
Verfasserangaben:Apratim Bhattacharya, Markus Gahn, Maria Neuss-Radu
Beschreibung
Zusammenfassung:We consider a nonlinear drift-diffusion system for multiple charged species in a porous medium in 2D and 3D with periodic microstructure. The system consists of a transport equation for the concentration of the species and Poisson’s equation for the electric potential. The diffusion terms depend nonlinearly on the concentrations. We consider non-homogeneous Neumann boundary condition for the electric potential. The aim is the rigorous derivation of an effective (homogenized) model in the limit when the scale parameter ε tends to zero. This is based on uniform a priori estimates for the solutions of the microscopic model. The crucial result is the uniform L∞-estimate for the concentration in space and time. This result exploits the fact that the system admits a nonnegative energy functional which decreases in time along the solutions of the system. By using weak and strong (two-scale) convergence properties of the microscopic solutions, effective models are derived in the limit ε→0 for different scalings of the microscopic model.
Beschreibung:Gesehen am 27.07.2022
Beschreibung:Online Resource
DOI:10.1016/j.nonrwa.2022.103651