Fenchel duality and a separation theorem on hadamard manifolds
In this paper, we introduce a definition of Fenchel conjugate and Fenchel biconjugate on Hadamard manifolds based on the tangent bundle. Our definition overcomes the inconvenience that the conjugate depends on the choice of a certain point on the manifold, as previous definitions required. On the ot...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
May 10, 2022
|
| In: |
SIAM journal on optimization
Year: 2022, Jahrgang: 32, Heft: 2, Pages: 854-873 |
| ISSN: | 1095-7189 |
| DOI: | 10.1137/21M1400699 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/21M1400699 Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/21M1400699 |
| Verfasserangaben: | Maurício Silva Louzeiro, Ronny Bergmann, and Roland Herzog |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1811957714 | ||
| 003 | DE-627 | ||
| 005 | 20220820233710.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220729s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1137/21M1400699 |2 doi | |
| 035 | |a (DE-627)1811957714 | ||
| 035 | |a (DE-599)KXP1811957714 | ||
| 035 | |a (OCoLC)1341464566 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Silva Louzeiro, Maurício |e VerfasserIn |0 (DE-588)1263861199 |0 (DE-627)1811958354 |4 aut | |
| 245 | 1 | 0 | |a Fenchel duality and a separation theorem on hadamard manifolds |c Maurício Silva Louzeiro, Ronny Bergmann, and Roland Herzog |
| 264 | 1 | |c May 10, 2022 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.07.2022 | ||
| 520 | |a In this paper, we introduce a definition of Fenchel conjugate and Fenchel biconjugate on Hadamard manifolds based on the tangent bundle. Our definition overcomes the inconvenience that the conjugate depends on the choice of a certain point on the manifold, as previous definitions required. On the other hand, this new definition still possesses properties known to hold in the Euclidean case. It even yields a broader interpretation of the Fenchel conjugate in the Euclidean case itself. Most prominently, our definition of the Fenchel conjugate provides a Fenchel--Moreau theorem for geodesically convex, proper, lower semicontinuous functions. In addition, this framework allows us to develop a theory of separation of convex sets on Hadamard manifolds, and a strict separation theorem is obtained. | ||
| 650 | 4 | |a 26B25 | |
| 650 | 4 | |a 49N15 | |
| 650 | 4 | |a 49Q99 | |
| 650 | 4 | |a 90C25 | |
| 650 | 4 | |a convex analysis | |
| 650 | 4 | |a Fenchel conjugate function | |
| 650 | 4 | |a Hadamard manifold | |
| 650 | 4 | |a Riemannian manifold | |
| 700 | 1 | |a Bergmann, Ronny |d 1983- |e VerfasserIn |0 (DE-588)1045445045 |0 (DE-627)774514876 |0 (DE-576)399216030 |4 aut | |
| 700 | 1 | |a Herzog, Roland |d 1974- |e VerfasserIn |0 (DE-588)1032195827 |0 (DE-627)738007285 |0 (DE-576)379874830 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Society for Industrial and Applied Mathematics |t SIAM journal on optimization |d Philadelphia, Pa. : SIAM, 1991 |g 32(2022), 2, Seite 854-873 |h Online-Ressource |w (DE-627)266885497 |w (DE-600)1468414-7 |w (DE-576)078590000 |x 1095-7189 |7 nnas |
| 773 | 1 | 8 | |g volume:32 |g year:2022 |g number:2 |g pages:854-873 |g extent:20 |a Fenchel duality and a separation theorem on hadamard manifolds |
| 856 | 4 | 0 | |u https://doi.org/10.1137/21M1400699 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://epubs.siam.org/doi/10.1137/21M1400699 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220729 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1032195827 |a Herzog, Roland |m 1032195827:Herzog, Roland |d 700000 |d 708000 |e 700000PH1032195827 |e 708000PH1032195827 |k 0/700000/ |k 1/700000/708000/ |p 3 |y j | ||
| 999 | |a KXP-PPN1811957714 |e 4173677898 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Maurício Silva Louzeiro, Ronny Bergmann, and Roland Herzog"]},"recId":"1811957714","note":["Gesehen am 29.07.2022"],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"May 10, 2022"}],"language":["eng"],"person":[{"family":"Silva Louzeiro","given":"Maurício","display":"Silva Louzeiro, Maurício","role":"aut"},{"role":"aut","display":"Bergmann, Ronny","given":"Ronny","family":"Bergmann"},{"given":"Roland","family":"Herzog","role":"aut","display":"Herzog, Roland"}],"id":{"doi":["10.1137/21M1400699"],"eki":["1811957714"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"20 S."}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"issn":["1095-7189"],"zdb":["1468414-7"],"eki":["266885497"]},"part":{"year":"2022","extent":"20","volume":"32","text":"32(2022), 2, Seite 854-873","issue":"2","pages":"854-873"},"pubHistory":["1.1991 -"],"origin":[{"dateIssuedDisp":"1991-","publisher":"SIAM","publisherPlace":"Philadelphia, Pa.","dateIssuedKey":"1991"}],"recId":"266885497","titleAlt":[{"title":"Journal on optimization"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"SIAM journal on optimization","title":"SIAM journal on optimization"}],"language":["eng"],"corporate":[{"role":"aut","display":"Society for Industrial and Applied Mathematics"}],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"note":["Gesehen am 02.07.2021"],"disp":"Society for Industrial and Applied MathematicsSIAM journal on optimization"}],"title":[{"title_sort":"Fenchel duality and a separation theorem on hadamard manifolds","title":"Fenchel duality and a separation theorem on hadamard manifolds"}]} | ||
| SRT | |a SILVALOUZEFENCHELDUA1020 | ||