Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge

Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other unc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Högele, Wolfgang (VerfasserIn) , Loeschel, R. (VerfasserIn) , Dobler, B. (VerfasserIn) , Hesser, Jürgen (VerfasserIn) , Koelbl, O. (VerfasserIn) , Zygmanski, P. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 January 2011
In: Medical physics
Year: 2011, Jahrgang: 38, Heft: 2, Pages: 668-681
ISSN:2473-4209
DOI:10.1118/1.3532959
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1118/1.3532959
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1118/1.3532959
Volltext
Verfasserangaben:W. Hoegele, R. Loeschel, B. Dobler, J. Hesser, O. Koelbl, P. Zygmanski

MARC

LEADER 00000caa a2200000 c 4500
001 1812009526
003 DE-627
005 20230427070208.0
007 cr uuu---uuuuu
008 220729s2011 xx |||||o 00| ||eng c
024 7 |a 10.1118/1.3532959  |2 doi 
035 |a (DE-627)1812009526 
035 |a (DE-599)KXP1812009526 
035 |a (OCoLC)1341464584 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Högele, Wolfgang  |d 1984-  |e VerfasserIn  |0 (DE-588)1041247168  |0 (DE-627)766696316  |0 (DE-576)392935317  |4 aut 
245 1 0 |a Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge  |c W. Hoegele, R. Loeschel, B. Dobler, J. Hesser, O. Koelbl, P. Zygmanski 
264 1 |c 10 January 2011 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.07.2022 
520 |a Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other uncertainties associated with patient setup. Methods: The target position is assumed to be defined by and is stochastically determined from positions of various features such as anatomical landmarks or markers in CB projections, i.e., radiographs acquired with a CB-CT system. The patient positioning problem of finding the target location from CB projections is posed as an inverse problem with prior knowledge and is solved using a Bayesian maximuma posteriori (MAP) approach. The prior knowledge is three-fold and includes the accuracy of an initial patient setup (such as in-room laser and skin marks), the plasticity of the body (relative shifts between target and features), and the feature detection error in CB projections (which may vary depending on specific detection algorithm and feature type). For this purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined. Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowledge (initial setup accuracy, plasticity of the body, and number of features) and the parameters of CB data acquisition (number of projections and accuracy of feature detection) to the expected estimation accuracy. Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to experimentally demonstrate its applicability and to perform the validation of the algorithm, a water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were utilized. These features were detected in the cone beam projections (XVI, Elekta Synergy®) by a local threshold method for demonstration purposes only. The accuracy of estimation (strongly varying for different plasticity parameters of the body) agreed with the rule of thumb formula. Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection errors with standard deviation of 0.5 cm and spatial displacements of the features with standard deviation of 0.5 cm. Conclusions: The authors have introduced a general MAP-based patient setup algorithm accounting for different sources of uncertainties, which are utilized as the prior knowledge in a transparent way. This new framework can be further utilized for different clinical sites, as well as theoretical developments in the field of patient positioning for radiotherapy. 
650 4 |a Anatomy 
650 4 |a and statistics 
650 4 |a Bayes methods 
650 4 |a biomechanics 
650 4 |a Cancer 
650 4 |a Computed tomography 
650 4 |a computerised tomography 
650 4 |a Conformal radiation treatment 
650 4 |a deformation 
650 4 |a diagnostic radiography 
650 4 |a estimation 
650 4 |a feature extraction 
650 4 |a IGRT 
650 4 |a Image registration 
650 4 |a inverse problems 
650 4 |a Inverse problems 
650 4 |a maximum a posteriori 
650 4 |a maximum likelihood estimation 
650 4 |a Mechanical and electrical properties of tissues and organs 
650 4 |a medical image processing 
650 4 |a Medical image reconstruction 
650 4 |a Medical imaging 
650 4 |a patient positioning 
650 4 |a phantoms 
650 4 |a plasticity 
650 4 |a Plasticity 
650 4 |a Probability theory 
650 4 |a radiation therapy 
650 4 |a Radiography 
650 4 |a setup error 
650 4 |a Stochastic analysis 
650 4 |a stochastic processes 
700 1 |a Loeschel, R.  |e VerfasserIn  |4 aut 
700 1 |a Dobler, B.  |e VerfasserIn  |4 aut 
700 1 |a Hesser, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1020647353  |0 (DE-627)691291071  |0 (DE-576)361513739  |4 aut 
700 1 |a Koelbl, O.  |e VerfasserIn  |4 aut 
700 1 |a Zygmanski, P.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 38(2011), 2 vom: Jan., Seite 668-681  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge 
773 1 8 |g volume:38  |g year:2011  |g number:2  |g month:01  |g pages:668-681  |g extent:14  |a Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge 
856 4 0 |u https://doi.org/10.1118/1.3532959  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1118/1.3532959  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220729 
993 |a Article 
994 |a 2011 
998 |g 1020647353  |a Hesser, Jürgen  |m 1020647353:Hesser, Jürgen  |d 60000  |d 63000  |e 60000PH1020647353  |e 63000PH1020647353  |k 0/60000/  |k 1/60000/63000/  |p 4 
999 |a KXP-PPN1812009526  |e 4173834683 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 29.07.2022"],"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"10 January 2011"}],"title":[{"title_sort":"Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge","title":"Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge"}],"person":[{"family":"Högele","display":"Högele, Wolfgang","given":"Wolfgang","role":"aut"},{"role":"aut","given":"R.","family":"Loeschel","display":"Loeschel, R."},{"role":"aut","given":"B.","display":"Dobler, B.","family":"Dobler"},{"role":"aut","given":"Jürgen","display":"Hesser, Jürgen","family":"Hesser"},{"display":"Koelbl, O.","family":"Koelbl","given":"O.","role":"aut"},{"given":"P.","role":"aut","display":"Zygmanski, P.","family":"Zygmanski"}],"id":{"doi":["10.1118/1.3532959"],"eki":["1812009526"]},"relHost":[{"disp":"Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledgeMedical physics","part":{"volume":"38","extent":"14","pages":"668-681","text":"38(2011), 2 vom: Jan., Seite 668-681","year":"2011","issue":"2"},"origin":[{"publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedDisp":"1974-","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedKey":"1974"}],"note":["Gesehen am 01.08.2025"],"titleAlt":[{"title":"Medical physics online"}],"title":[{"title_sort":"Medical physics","title":"Medical physics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"recId":"265784867","pubHistory":["1.1974 -"],"id":{"zdb":["1466421-5"],"eki":["265784867"],"issn":["2473-4209","1522-8541"]}}],"recId":"1812009526","physDesc":[{"extent":"14 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["W. Hoegele, R. Loeschel, B. Dobler, J. Hesser, O. Koelbl, P. Zygmanski"]}} 
SRT |a HOEGELEWOLSTOCHASTIC1020