Predicting missed health care visits during the COVID-19 pandemic using machine learning methods: evidence from 55,500 individuals from 28 European Countries

Background The COVID-19 pandemic has led many individuals to miss essential care. Machine-learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such approaches may be e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reuter, Anna (VerfasserIn) , Smolić, Šime (VerfasserIn) , Bärnighausen, Till (VerfasserIn) , Sudharsanan, Nikkil (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: March 04, 2022
Ausgabe:Preprint
In: medRxiv
Year: 2022, Pages: 1-21
DOI:10.1101/2022.03.01.22271611
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1101/2022.03.01.22271611
Verlag, lizenzpflichtig, Volltext: http://medrxiv.org/lookup/doi/10.1101/2022.03.01.22271611
Volltext
Verfasserangaben:Anna Reuter, Prof. Šime Smolić, Prof. Dr. Till Bärnighausen, Prof. Dr. Nikkil Sudharsanan

MARC

LEADER 00000caa a2200000 c 4500
001 1813293716
003 DE-627
005 20230720134558.0
007 cr uuu---uuuuu
008 220804s2022 xx |||||o 00| ||eng c
024 7 |a 10.1101/2022.03.01.22271611  |2 doi 
035 |a (DE-627)1813293716 
035 |a (DE-599)KXP1813293716 
035 |a (OCoLC)1361713508 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Reuter, Anna  |e VerfasserIn  |0 (DE-588)115481758X  |0 (DE-627)1016185480  |0 (DE-576)501254390  |4 aut 
245 1 0 |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods  |b evidence from 55,500 individuals from 28 European Countries  |c Anna Reuter, Prof. Šime Smolić, Prof. Dr. Till Bärnighausen, Prof. Dr. Nikkil Sudharsanan 
250 |a Preprint 
264 1 |c March 04, 2022 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a This version: February 28, 2022 
500 |a Gesehen am 04.08.2022 
520 |a Background The COVID-19 pandemic has led many individuals to miss essential care. Machine-learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such approaches may be especially useful for efficiently targeting interventions for health systems overburdened by the COVID-19 pandemic. 
700 1 |a Smolić, Šime  |e VerfasserIn  |4 aut 
700 1 |a Bärnighausen, Till  |d 1969-  |e VerfasserIn  |0 (DE-588)120262029  |0 (DE-627)080560512  |0 (DE-576)178470848  |4 aut 
700 1 |a Sudharsanan, Nikkil  |e VerfasserIn  |0 (DE-588)1191848108  |0 (DE-627)1670317765  |4 aut 
773 0 8 |i Enthalten in  |t medRxiv  |d Cold Spring Harbor : Cold Spring Harbor Laboratory, 2019  |g (2022), Artikel-ID 2022.03.01.22271611, Seite 1-21  |h Online-Ressource  |w (DE-627)1738046478  |w (DE-600)3044535-8  |7 nnas  |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European Countries 
773 1 8 |g year:2022  |g elocationid:2022.03.01.22271611  |g pages:1-21  |g extent:21  |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European Countries 
856 4 0 |u https://doi.org/10.1101/2022.03.01.22271611  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://medrxiv.org/lookup/doi/10.1101/2022.03.01.22271611  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220804 
993 |a Article 
994 |a 2022 
998 |g 1191848108  |a Sudharsanan, Nikkil  |m 1191848108:Sudharsanan, Nikkil  |d 910000  |d 912800  |e 910000PS1191848108  |e 912800PS1191848108  |k 0/910000/  |k 1/910000/912800/  |p 4  |y j 
998 |g 120262029  |a Bärnighausen, Till  |m 120262029:Bärnighausen, Till  |d 910000  |d 912800  |e 910000PB120262029  |e 912800PB120262029  |k 0/910000/  |k 1/910000/912800/  |p 3 
998 |g 115481758X  |a Reuter, Anna  |m 115481758X:Reuter, Anna  |d 910000  |d 912800  |e 910000PR115481758X  |e 912800PR115481758X  |k 0/910000/  |k 1/910000/912800/  |p 1  |x j 
999 |a KXP-PPN1813293716  |e 4175901604 
BIB |a Y 
JSO |a {"person":[{"family":"Reuter","display":"Reuter, Anna","given":"Anna","role":"aut"},{"role":"aut","given":"Šime","display":"Smolić, Šime","family":"Smolić"},{"family":"Bärnighausen","display":"Bärnighausen, Till","role":"aut","given":"Till"},{"role":"aut","given":"Nikkil","display":"Sudharsanan, Nikkil","family":"Sudharsanan"}],"language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"March 04, 2022","edition":"Preprint","dateIssuedKey":"2022"}],"note":["This version: February 28, 2022","Gesehen am 04.08.2022"],"title":[{"title_sort":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods","subtitle":"evidence from 55,500 individuals from 28 European Countries","title":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods"}],"id":{"doi":["10.1101/2022.03.01.22271611"],"eki":["1813293716"]},"relHost":[{"part":{"year":"2022","pages":"1-21","extent":"21","text":"(2022), Artikel-ID 2022.03.01.22271611, Seite 1-21"},"id":{"eki":["1738046478"],"zdb":["3044535-8"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"1738046478","disp":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European CountriesmedRxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"origin":[{"publisherPlace":"Cold Spring Harbor","dateIssuedKey":"2019","publisher":"Cold Spring Harbor Laboratory","dateIssuedDisp":"[2019?]-"}],"note":["medRxiv (pronounced \"med-archive\") is a free online archive and distribution server for complete but unpublished manuscripts (preprints) in the medical, clinical, and related health sciences. Preprints are preliminary reports of work that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information","Gesehen am 06.11.2020"],"title":[{"title_sort":"medRxiv","subtitle":"the preprint server for health sciences","title":"medRxiv"}]}],"recId":"1813293716","name":{"displayForm":["Anna Reuter, Prof. Šime Smolić, Prof. Dr. Till Bärnighausen, Prof. Dr. Nikkil Sudharsanan"]},"physDesc":[{"extent":"21 S."}]} 
SRT |a REUTERANNAPREDICTING0420