Predicting missed health care visits during the COVID-19 pandemic using machine learning methods: evidence from 55,500 individuals from 28 European Countries
Background The COVID-19 pandemic has led many individuals to miss essential care. Machine-learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such approaches may be e...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
March 04, 2022
|
| Ausgabe: | Preprint |
| In: |
medRxiv
Year: 2022, Pages: 1-21 |
| DOI: | 10.1101/2022.03.01.22271611 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1101/2022.03.01.22271611 Verlag, lizenzpflichtig, Volltext: http://medrxiv.org/lookup/doi/10.1101/2022.03.01.22271611 |
| Verfasserangaben: | Anna Reuter, Prof. Šime Smolić, Prof. Dr. Till Bärnighausen, Prof. Dr. Nikkil Sudharsanan |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1813293716 | ||
| 003 | DE-627 | ||
| 005 | 20230720134558.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220804s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1101/2022.03.01.22271611 |2 doi | |
| 035 | |a (DE-627)1813293716 | ||
| 035 | |a (DE-599)KXP1813293716 | ||
| 035 | |a (OCoLC)1361713508 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Reuter, Anna |e VerfasserIn |0 (DE-588)115481758X |0 (DE-627)1016185480 |0 (DE-576)501254390 |4 aut | |
| 245 | 1 | 0 | |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods |b evidence from 55,500 individuals from 28 European Countries |c Anna Reuter, Prof. Šime Smolić, Prof. Dr. Till Bärnighausen, Prof. Dr. Nikkil Sudharsanan |
| 250 | |a Preprint | ||
| 264 | 1 | |c March 04, 2022 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a This version: February 28, 2022 | ||
| 500 | |a Gesehen am 04.08.2022 | ||
| 520 | |a Background The COVID-19 pandemic has led many individuals to miss essential care. Machine-learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such approaches may be especially useful for efficiently targeting interventions for health systems overburdened by the COVID-19 pandemic. | ||
| 700 | 1 | |a Smolić, Šime |e VerfasserIn |4 aut | |
| 700 | 1 | |a Bärnighausen, Till |d 1969- |e VerfasserIn |0 (DE-588)120262029 |0 (DE-627)080560512 |0 (DE-576)178470848 |4 aut | |
| 700 | 1 | |a Sudharsanan, Nikkil |e VerfasserIn |0 (DE-588)1191848108 |0 (DE-627)1670317765 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t medRxiv |d Cold Spring Harbor : Cold Spring Harbor Laboratory, 2019 |g (2022), Artikel-ID 2022.03.01.22271611, Seite 1-21 |h Online-Ressource |w (DE-627)1738046478 |w (DE-600)3044535-8 |7 nnas |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European Countries |
| 773 | 1 | 8 | |g year:2022 |g elocationid:2022.03.01.22271611 |g pages:1-21 |g extent:21 |a Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European Countries |
| 856 | 4 | 0 | |u https://doi.org/10.1101/2022.03.01.22271611 |x Resolving-System |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://medrxiv.org/lookup/doi/10.1101/2022.03.01.22271611 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220804 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1191848108 |a Sudharsanan, Nikkil |m 1191848108:Sudharsanan, Nikkil |d 910000 |d 912800 |e 910000PS1191848108 |e 912800PS1191848108 |k 0/910000/ |k 1/910000/912800/ |p 4 |y j | ||
| 998 | |g 120262029 |a Bärnighausen, Till |m 120262029:Bärnighausen, Till |d 910000 |d 912800 |e 910000PB120262029 |e 912800PB120262029 |k 0/910000/ |k 1/910000/912800/ |p 3 | ||
| 998 | |g 115481758X |a Reuter, Anna |m 115481758X:Reuter, Anna |d 910000 |d 912800 |e 910000PR115481758X |e 912800PR115481758X |k 0/910000/ |k 1/910000/912800/ |p 1 |x j | ||
| 999 | |a KXP-PPN1813293716 |e 4175901604 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"family":"Reuter","display":"Reuter, Anna","given":"Anna","role":"aut"},{"role":"aut","given":"Šime","display":"Smolić, Šime","family":"Smolić"},{"family":"Bärnighausen","display":"Bärnighausen, Till","role":"aut","given":"Till"},{"role":"aut","given":"Nikkil","display":"Sudharsanan, Nikkil","family":"Sudharsanan"}],"language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"March 04, 2022","edition":"Preprint","dateIssuedKey":"2022"}],"note":["This version: February 28, 2022","Gesehen am 04.08.2022"],"title":[{"title_sort":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods","subtitle":"evidence from 55,500 individuals from 28 European Countries","title":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods"}],"id":{"doi":["10.1101/2022.03.01.22271611"],"eki":["1813293716"]},"relHost":[{"part":{"year":"2022","pages":"1-21","extent":"21","text":"(2022), Artikel-ID 2022.03.01.22271611, Seite 1-21"},"id":{"eki":["1738046478"],"zdb":["3044535-8"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"1738046478","disp":"Predicting missed health care visits during the COVID-19 pandemic using machine learning methods evidence from 55,500 individuals from 28 European CountriesmedRxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"origin":[{"publisherPlace":"Cold Spring Harbor","dateIssuedKey":"2019","publisher":"Cold Spring Harbor Laboratory","dateIssuedDisp":"[2019?]-"}],"note":["medRxiv (pronounced \"med-archive\") is a free online archive and distribution server for complete but unpublished manuscripts (preprints) in the medical, clinical, and related health sciences. Preprints are preliminary reports of work that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information","Gesehen am 06.11.2020"],"title":[{"title_sort":"medRxiv","subtitle":"the preprint server for health sciences","title":"medRxiv"}]}],"recId":"1813293716","name":{"displayForm":["Anna Reuter, Prof. Šime Smolić, Prof. Dr. Till Bärnighausen, Prof. Dr. Nikkil Sudharsanan"]},"physDesc":[{"extent":"21 S."}]} | ||
| SRT | |a REUTERANNAPREDICTING0420 | ||