Predicting missed health care visits during the COVID-19 pandemic using machine learning methods: evidence from 55,500 individuals from 28 European Countries

Background The COVID-19 pandemic has led many individuals to miss essential care. Machine-learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such approaches may be e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reuter, Anna (VerfasserIn) , Smolić, Šime (VerfasserIn) , Bärnighausen, Till (VerfasserIn) , Sudharsanan, Nikkil (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: March 04, 2022
Ausgabe:Preprint
In: medRxiv
Year: 2022, Pages: 1-21
DOI:10.1101/2022.03.01.22271611
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1101/2022.03.01.22271611
Verlag, lizenzpflichtig, Volltext: http://medrxiv.org/lookup/doi/10.1101/2022.03.01.22271611
Volltext
Verfasserangaben:Anna Reuter, Prof. Šime Smolić, Prof. Dr. Till Bärnighausen, Prof. Dr. Nikkil Sudharsanan
Search Result 1

Predicting missed health care visits during the COVID-19 pandemic using machine learning methods: evidence from 55,500 individuals from 28 European countries von Reuter, Anna (VerfasserIn) , Smolić, Šime (VerfasserIn) , Bärnighausen, Till (VerfasserIn) , Sudharsanan, Nikkil (VerfasserIn) ,


Volltext
Article (Journal) Online Resource