Kolmogorov complexity and the Recursion Theorem

Several classes of diagonally nonrecursive (DNR) functions are characterized in terms of Kolmogorov complexity. In particular, a set of natural numbers A can wtt-compute a DNR function iff there is a nontrivial recursive lower bound on the Kolmogorov complexity of the initial segments of A. Furtherm...

Full description

Saved in:
Bibliographic Details
Main Authors: Kjos-Hanssen, Bjørn (Author) , Merkle, Wolfgang (Author) , Stephan, Frank (Author)
Format: Article (Journal)
Language:English
Published: April 27, 2011
In: Transactions of the American Mathematical Society
Year: 2011, Volume: 363, Issue: 10, Pages: 5465-5480
ISSN:1088-6850
DOI:10.1090/S0002-9947-2011-05306-7
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/S0002-9947-2011-05306-7
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/tran/2011-363-10/S0002-9947-2011-05306-7/
Get full text
Author Notes:Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan

MARC

LEADER 00000caa a2200000 c 4500
001 1813399522
003 DE-627
005 20230710123454.0
007 cr uuu---uuuuu
008 220808s2011 xx |||||o 00| ||eng c
024 7 |a 10.1090/S0002-9947-2011-05306-7  |2 doi 
035 |a (DE-627)1813399522 
035 |a (DE-599)KXP1813399522 
035 |a (OCoLC)1389793489 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kjos-Hanssen, Bjørn  |e VerfasserIn  |0 (DE-588)1176728318  |0 (DE-627)1047753820  |0 (DE-576)516776789  |4 aut 
245 1 0 |a Kolmogorov complexity and the Recursion Theorem  |c Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan 
264 1 |c April 27, 2011 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.08.2022 
520 |a Several classes of diagonally nonrecursive (DNR) functions are characterized in terms of Kolmogorov complexity. In particular, a set of natural numbers A can wtt-compute a DNR function iff there is a nontrivial recursive lower bound on the Kolmogorov complexity of the initial segments of A. Furthermore, A can Turing compute a DNR function iff there is a nontrivial A-recursive lower bound on the Kolmogorov complexity of the initial segments of A. A is PA-complete, that is, A can compute a {0,1}-valued DNR function, iff A can compute a function F such that F⁡(n) is a string of length n and maximal C-complexity among the strings of length n. A≥TK iff A can compute a function F such that F⁡(n) is a string of length n and maximal H-complexity among the strings of length n. Further characterizations for these classes are given. The existence of a DNR function in a Turing degree is equivalent to the failure of the Recursion Theorem for this degree; thus the provided results characterize those Turing degrees in terms of Kolmogorov complexity which no longer permit the usage of the Recursion Theorem. 
700 1 |a Merkle, Wolfgang  |e VerfasserIn  |0 (DE-588)1049898400  |0 (DE-627)782852831  |0 (DE-576)40388201X  |4 aut 
700 1 |a Stephan, Frank  |e VerfasserIn  |0 (DE-588)1125914025  |0 (DE-627)880490810  |0 (DE-576)483630047  |4 aut 
773 0 8 |i Enthalten in  |a American Mathematical Society  |t Transactions of the American Mathematical Society  |d Providence, RI : Soc., 1900  |g 363(2011), 10, Seite 5465-5480  |h Online-Ressource  |w (DE-627)269247351  |w (DE-600)1474637-2  |w (DE-576)079876110  |x 1088-6850  |7 nnas 
773 1 8 |g volume:363  |g year:2011  |g number:10  |g pages:5465-5480  |g extent:16  |a Kolmogorov complexity and the Recursion Theorem 
856 4 0 |u https://doi.org/10.1090/S0002-9947-2011-05306-7  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.ams.org/tran/2011-363-10/S0002-9947-2011-05306-7/  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220808 
993 |a Article 
994 |a 2011 
998 |g 1049898400  |a Merkle, Wolfgang  |m 1049898400:Merkle, Wolfgang  |d 110000  |d 110300  |e 110000PM1049898400  |e 110300PM1049898400  |k 0/110000/  |k 1/110000/110300/  |p 2 
999 |a KXP-PPN1813399522  |e 4176773774 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 08.08.2022"],"language":["eng"],"recId":"1813399522","person":[{"role":"aut","display":"Kjos-Hanssen, Bjørn","roleDisplay":"VerfasserIn","given":"Bjørn","family":"Kjos-Hanssen"},{"family":"Merkle","given":"Wolfgang","display":"Merkle, Wolfgang","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Stephan","given":"Frank","roleDisplay":"VerfasserIn","display":"Stephan, Frank","role":"aut"}],"title":[{"title_sort":"Kolmogorov complexity and the Recursion Theorem","title":"Kolmogorov complexity and the Recursion Theorem"}],"physDesc":[{"extent":"16 S."}],"relHost":[{"title":[{"title":"Transactions of the American Mathematical Society","title_sort":"Transactions of the American Mathematical Society"}],"note":["Gesehen am 09.07.24"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"American Mathematical SocietyTransactions of the American Mathematical Society","recId":"269247351","language":["eng"],"corporate":[{"display":"American Mathematical Society","roleDisplay":"VerfasserIn","role":"aut"}],"pubHistory":["1.1900 -"],"part":{"extent":"16","volume":"363","text":"363(2011), 10, Seite 5465-5480","issue":"10","pages":"5465-5480","year":"2011"},"origin":[{"dateIssuedDisp":"1900-","publisher":"Soc.","dateIssuedKey":"1900","publisherPlace":"Providence, RI"}],"id":{"issn":["1088-6850"],"eki":["269247351"],"zdb":["1474637-2"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"April 27, 2011"}],"id":{"doi":["10.1090/S0002-9947-2011-05306-7"],"eki":["1813399522"]}} 
SRT |a KJOSHANSSEKOLMOGOROV2720