Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study

Background - Histopathological assessment of transplant biopsies is currently the standard method to diagnose allograft rejection and can help guide patient management, but it is one of the most challenging areas of pathology, requiring considerable expertise, time, and effort. We aimed to analyse t...

Full description

Saved in:
Bibliographic Details
Main Authors: Kers, Jesper (Author) , Bülow, Roman David (Author) , Klinkhammer, Barbara Mara (Author) , Breimer, Gerben E. (Author) , Fontana, Francesco (Author) , Abiola, Adeyemi Adefidipe (Author) , Hofstraat, Rianne (Author) , Corthals, Garry L. (Author) , Peters-Sengers, Hessel (Author) , Djudjaj, Sonja (Author) , Stillfried, Saskia von (Author) , Hölscher, David L. (Author) , Pieters, Tobias T. (Author) , Zuilen, Arjan D. van (Author) , Bemelman, Frederike J. (Author) , Nurmohamed, Azam S. (Author) , Naesens, Maarten (Author) , Roelofs, Joris J. T. H. (Author) , Florquin, Sandrine (Author) , Flöge, Jürgen (Author) , Nguyen, Tri Q. (Author) , Kather, Jakob Nikolas (Author) , Boor, Peter (Author)
Format: Article (Journal)
Language:English
Published: January 2022
In: The lancet. Digital health
Year: 2022, Volume: 4, Issue: 1, Pages: e18-e26
ISSN:2589-7500
DOI:10.1016/S2589-7500(21)00211-9
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S2589-7500(21)00211-9
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589750021002119
Get full text
Author Notes:Jesper Kers, Roman D Bülow, Barbara M Klinkhammer, Gerben E Breimer, Francesco Fontana, Adeyemi Adefidipe Abiola, Rianne Hofstraat, Garry L Corthals, Hessel Peters-Sengers, Sonja Djudjaj, Saskia von Stillfried, David L Hölscher, Tobias T Pieters, Arjan D van Zuilen, Frederike J Bemelman, Azam S Nurmohamed, Maarten Naesens, Joris J T H Roelofs, Sandrine Florquin, Jürgen Floege, Tri Q Nguyen, Jakob N Kather, Peter Boor

MARC

LEADER 00000caa a2200000 c 4500
001 1814178988
003 DE-627
005 20230428195402.0
007 cr uuu---uuuuu
008 220811s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/S2589-7500(21)00211-9  |2 doi 
035 |a (DE-627)1814178988 
035 |a (DE-599)KXP1814178988 
035 |a (OCoLC)1361706414 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kers, Jesper  |e VerfasserIn  |0 (DE-588)1265142556  |0 (DE-627)1814189084  |4 aut 
245 1 0 |a Deep learning-based classification of kidney transplant pathology  |b a retrospective, multicentre, proof-of-concept study  |c Jesper Kers, Roman D Bülow, Barbara M Klinkhammer, Gerben E Breimer, Francesco Fontana, Adeyemi Adefidipe Abiola, Rianne Hofstraat, Garry L Corthals, Hessel Peters-Sengers, Sonja Djudjaj, Saskia von Stillfried, David L Hölscher, Tobias T Pieters, Arjan D van Zuilen, Frederike J Bemelman, Azam S Nurmohamed, Maarten Naesens, Joris J T H Roelofs, Sandrine Florquin, Jürgen Floege, Tri Q Nguyen, Jakob N Kather, Peter Boor 
264 1 |c January 2022 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.08.2022 
520 |a Background - Histopathological assessment of transplant biopsies is currently the standard method to diagnose allograft rejection and can help guide patient management, but it is one of the most challenging areas of pathology, requiring considerable expertise, time, and effort. We aimed to analyse the utility of deep learning to preclassify histology of kidney allograft biopsies into three main broad categories (ie, normal, rejection, and other diseases) as a potential biopsy triage system focusing on transplant rejection. - Methods - We performed a retrospective, multicentre, proof-of-concept study using 5844 digital whole slide images of kidney allograft biopsies from 1948 patients. Kidney allograft biopsy samples were identified by a database search in the Departments of Pathology of the Amsterdam UMC, Amsterdam, Netherlands (1130 patients) and the University Medical Center Utrecht, Utrecht, Netherlands (717 patients). 101 consecutive kidney transplant biopsies were identified in the archive of the Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany. Convolutional neural networks (CNNs) were trained to classify allograft biopsies as normal, rejection, or other diseases. Three times cross-validation (1847 patients) and deployment on an external real-world cohort (101 patients) were used for validation. Area under the receiver operating characteristic curve (AUROC) was used as the main performance metric (the primary endpoint to assess CNN performance). - Findings - Serial CNNs, first classifying kidney allograft biopsies as normal (AUROC 0·87 [ten times bootstrapped CI 0·85-0·88]) and disease (0·87 [0·86-0·88]), followed by a second CNN classifying biopsies classified as disease into rejection (0·75 [0·73-0·76]) and other diseases (0·75 [0·72-0·77]), showed similar AUROC in cross-validation and deployment on independent real-world data (first CNN normal AUROC 0·83 [0·80-0·85], disease 0·83 [0·73-0·91]; second CNN rejection 0·61 [0·51-0·70], other diseases 0·61 [0·50-0·74]). A single CNN classifying biopsies as normal, rejection, or other diseases showed similar performance in cross-validation (normal AUROC 0·80 [0·73-0·84], rejection 0·76 [0·66-0·80], other diseases 0·50 [0·36-0·57]) and generalised well for normal and rejection classes in the real-world data. Visualisation techniques highlighted rejection-relevant areas of biopsies in the tubulointerstitium. - Interpretation - This study showed that deep learning-based classification of transplant biopsies could support pathological diagnostics of kidney allograft rejection. - Funding - European Research Council; German Research Foundation; German Federal Ministries of Education and Research, Health, and Economic Affairs and Energy; Dutch Kidney Foundation; Human(e) AI Research Priority Area of the University of Amsterdam; and Max-Eder Programme of German Cancer Aid. 
700 1 |a Bülow, Roman David  |d 1991-  |e VerfasserIn  |0 (DE-588)1204027145  |0 (DE-627)1689114568  |4 aut 
700 1 |a Klinkhammer, Barbara Mara  |d 1985-  |e VerfasserIn  |0 (DE-588)141686685  |0 (DE-627)630827281  |0 (DE-576)32536558X  |4 aut 
700 1 |a Breimer, Gerben E.  |e VerfasserIn  |4 aut 
700 1 |a Fontana, Francesco  |e VerfasserIn  |4 aut 
700 1 |a Abiola, Adeyemi Adefidipe  |e VerfasserIn  |4 aut 
700 1 |a Hofstraat, Rianne  |e VerfasserIn  |4 aut 
700 1 |a Corthals, Garry L.  |e VerfasserIn  |4 aut 
700 1 |a Peters-Sengers, Hessel  |e VerfasserIn  |4 aut 
700 1 |a Djudjaj, Sonja  |d 1981-  |e VerfasserIn  |0 (DE-588)1029475008  |0 (DE-627)733597556  |0 (DE-576)377329371  |4 aut 
700 1 |a Stillfried, Saskia von  |e VerfasserIn  |4 aut 
700 1 |a Hölscher, David L.  |e VerfasserIn  |4 aut 
700 1 |a Pieters, Tobias T.  |e VerfasserIn  |4 aut 
700 1 |a Zuilen, Arjan D. van  |e VerfasserIn  |4 aut 
700 1 |a Bemelman, Frederike J.  |e VerfasserIn  |4 aut 
700 1 |a Nurmohamed, Azam S.  |e VerfasserIn  |4 aut 
700 1 |a Naesens, Maarten  |e VerfasserIn  |4 aut 
700 1 |a Roelofs, Joris J. T. H.  |e VerfasserIn  |4 aut 
700 1 |a Florquin, Sandrine  |e VerfasserIn  |4 aut 
700 1 |a Flöge, Jürgen  |d 1959-  |e VerfasserIn  |0 (DE-588)110658205  |0 (DE-627)610529153  |0 (DE-576)253430755  |4 aut 
700 1 |a Nguyen, Tri Q.  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Boor, Peter  |d 1979-  |e VerfasserIn  |0 (DE-588)140268456  |0 (DE-627)616972016  |0 (DE-576)316172979  |4 aut 
773 0 8 |i Enthalten in  |t The lancet. Digital health  |d London : The Lancet, 2019  |g 4(2022), 1, Seite e18-e26  |h Online-Ressource  |w (DE-627)1665782404  |w (DE-600)2972368-1  |x 2589-7500  |7 nnas  |a Deep learning-based classification of kidney transplant pathology a retrospective, multicentre, proof-of-concept study 
773 1 8 |g volume:4  |g year:2022  |g number:1  |g pages:e18-e26  |g extent:9  |a Deep learning-based classification of kidney transplant pathology a retrospective, multicentre, proof-of-concept study 
856 4 0 |u https://doi.org/10.1016/S2589-7500(21)00211-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589750021002119  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220811 
993 |a Article 
994 |a 2022 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 22 
999 |a KXP-PPN1814178988  |e 4178491237 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Jesper Kers, Roman D Bülow, Barbara M Klinkhammer, Gerben E Breimer, Francesco Fontana, Adeyemi Adefidipe Abiola, Rianne Hofstraat, Garry L Corthals, Hessel Peters-Sengers, Sonja Djudjaj, Saskia von Stillfried, David L Hölscher, Tobias T Pieters, Arjan D van Zuilen, Frederike J Bemelman, Azam S Nurmohamed, Maarten Naesens, Joris J T H Roelofs, Sandrine Florquin, Jürgen Floege, Tri Q Nguyen, Jakob N Kather, Peter Boor"]},"id":{"eki":["1814178988"],"doi":["10.1016/S2589-7500(21)00211-9"]},"physDesc":[{"extent":"9 S."}],"recId":"1814178988","person":[{"family":"Kers","role":"aut","given":"Jesper","display":"Kers, Jesper"},{"display":"Bülow, Roman David","family":"Bülow","role":"aut","given":"Roman David"},{"given":"Barbara Mara","role":"aut","family":"Klinkhammer","display":"Klinkhammer, Barbara Mara"},{"display":"Breimer, Gerben E.","family":"Breimer","given":"Gerben E.","role":"aut"},{"role":"aut","given":"Francesco","family":"Fontana","display":"Fontana, Francesco"},{"family":"Abiola","role":"aut","given":"Adeyemi Adefidipe","display":"Abiola, Adeyemi Adefidipe"},{"family":"Hofstraat","given":"Rianne","role":"aut","display":"Hofstraat, Rianne"},{"display":"Corthals, Garry L.","given":"Garry L.","role":"aut","family":"Corthals"},{"family":"Peters-Sengers","role":"aut","given":"Hessel","display":"Peters-Sengers, Hessel"},{"display":"Djudjaj, Sonja","family":"Djudjaj","given":"Sonja","role":"aut"},{"display":"Stillfried, Saskia von","family":"Stillfried","given":"Saskia von","role":"aut"},{"given":"David L.","role":"aut","family":"Hölscher","display":"Hölscher, David L."},{"display":"Pieters, Tobias T.","family":"Pieters","given":"Tobias T.","role":"aut"},{"role":"aut","given":"Arjan D. van","family":"Zuilen","display":"Zuilen, Arjan D. van"},{"role":"aut","given":"Frederike J.","family":"Bemelman","display":"Bemelman, Frederike J."},{"display":"Nurmohamed, Azam S.","given":"Azam S.","role":"aut","family":"Nurmohamed"},{"family":"Naesens","role":"aut","given":"Maarten","display":"Naesens, Maarten"},{"role":"aut","given":"Joris J. T. H.","family":"Roelofs","display":"Roelofs, Joris J. T. H."},{"display":"Florquin, Sandrine","role":"aut","given":"Sandrine","family":"Florquin"},{"given":"Jürgen","role":"aut","family":"Flöge","display":"Flöge, Jürgen"},{"display":"Nguyen, Tri Q.","family":"Nguyen","given":"Tri Q.","role":"aut"},{"family":"Kather","given":"Jakob Nikolas","role":"aut","display":"Kather, Jakob Nikolas"},{"given":"Peter","role":"aut","family":"Boor","display":"Boor, Peter"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"1665782404","disp":"Deep learning-based classification of kidney transplant pathology a retrospective, multicentre, proof-of-concept studyThe lancet. Digital health","pubHistory":["Volume 1, issue 1 (May 2019)-"],"origin":[{"publisher":"The Lancet","publisherPlace":"London","dateIssuedDisp":"[2019]-"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"part":{"volume":"4","year":"2022","extent":"9","text":"4(2022), 1, Seite e18-e26","issue":"1","pages":"e18-e26"},"title":[{"partname":"Digital health","title":"The lancet","title_sort":"lancet"}],"id":{"eki":["1665782404"],"issn":["2589-7500"],"zdb":["2972368-1"]}}],"origin":[{"dateIssuedDisp":"January 2022","dateIssuedKey":"2022"}],"note":["Gesehen am 11.08.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"title":[{"title_sort":"Deep learning-based classification of kidney transplant pathology","title":"Deep learning-based classification of kidney transplant pathology","subtitle":"a retrospective, multicentre, proof-of-concept study"}]} 
SRT |a KERSJESPERDEEPLEARNI2022