Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows

Modeling in neuroscience occurs at the intersection of different points of view and approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model is constructed to investigate a specific hypothesis about how the system works or why certain phenomena are observed. Dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eriksson, Olivia (VerfasserIn) , Bhalla, Upinder Singh (VerfasserIn) , Blackwell, Kim T. (VerfasserIn) , Crook, Sharon M. (VerfasserIn) , Keller, Daniel (VerfasserIn) , Kramer, Andrei (VerfasserIn) , Linne, Marja-Leena (VerfasserIn) , Saudargienė, Ausra (VerfasserIn) , Wade, Rebecca C. (VerfasserIn) , Hellgren Kotaleski, Jeanette (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 July 2022
In: eLife
Year: 2022, Jahrgang: 11, Pages: 1-31
ISSN:2050-084X
DOI:10.7554/eLife.69013
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.7554/eLife.69013
Volltext
Verfasserangaben:Olivia Eriksson, Upinder Singh Bhalla, Kim T. Blackwell, Sharon M. Crook, Daniel Keller, Andrei Kramer, Marja-Leena Linne, Ausra Saudargienė, Rebecca C. Wade, Jeanette Hellgren Kotaleski

MARC

LEADER 00000caa a2200000 c 4500
001 1814334475
003 DE-627
005 20230118153545.0
007 cr uuu---uuuuu
008 220815s2022 xx |||||o 00| ||eng c
024 7 |a 10.7554/eLife.69013  |2 doi 
035 |a (DE-627)1814334475 
035 |a (DE-599)KXP1814334475 
035 |a (OCoLC)1361713180 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Eriksson, Olivia  |e VerfasserIn  |0 (DE-588)1265430500  |0 (DE-627)181433520X  |4 aut 
245 1 0 |a Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows  |c Olivia Eriksson, Upinder Singh Bhalla, Kim T. Blackwell, Sharon M. Crook, Daniel Keller, Andrei Kramer, Marja-Leena Linne, Ausra Saudargienė, Rebecca C. Wade, Jeanette Hellgren Kotaleski 
264 1 |c 06 July 2022 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.08.2022 
520 |a Modeling in neuroscience occurs at the intersection of different points of view and approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model is constructed to investigate a specific hypothesis about how the system works or why certain phenomena are observed. Data-driven modeling, on the other hand, follows a more unbiased approach, with model construction informed by the computationally intensive use of data. At the same time, researchers employ models at different biological scales and at different levels of abstraction. Combining these models while validating them against experimental data increases understanding of the multiscale brain. However, a lack of interoperability, transparency, and reusability of both models and the workflows used to construct them creates barriers for the integration of models representing different biological scales and built using different modeling philosophies. We argue that the same imperatives that drive resources and policy for data - such as the FAIR (Findable, Accessible, Interoperable, Reusable) principles - also support the integration of different modeling approaches. The FAIR principles require that data be shared in formats that are Findable, Accessible, Interoperable, and Reusable. Applying these principles to models and modeling workflows, as well as the data used to constrain and validate them, would allow researchers to find, reuse, question, validate, and extend published models, regardless of whether they are implemented phenomenologically or mechanistically, as a few equations or as a multiscale, hierarchical system. To illustrate these ideas, we use a classical synaptic plasticity model, the Bienenstock-Cooper-Munro rule, as an example due to its long history, different levels of abstraction, and implementation at many scales. 
650 4 |a computational biology 
650 4 |a FAIR 
650 4 |a mathematical modeling 
650 4 |a modeling workflows 
650 4 |a neuroscience 
650 4 |a Neurosciences 
650 4 |a parameter estimation 
650 4 |a synaptic plasticity 
650 4 |a systems biology 
650 4 |a uncertainty quantification 
650 4 |a Workflow 
700 1 |a Bhalla, Upinder Singh  |e VerfasserIn  |4 aut 
700 1 |a Blackwell, Kim T.  |e VerfasserIn  |4 aut 
700 1 |a Crook, Sharon M.  |e VerfasserIn  |4 aut 
700 1 |a Keller, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Kramer, Andrei  |e VerfasserIn  |4 aut 
700 1 |a Linne, Marja-Leena  |e VerfasserIn  |4 aut 
700 1 |a Saudargienė, Ausra  |e VerfasserIn  |4 aut 
700 1 |a Wade, Rebecca C.  |e VerfasserIn  |0 (DE-588)102801774X  |0 (DE-627)730136000  |0 (DE-576)276591402  |4 aut 
700 1 |a Hellgren Kotaleski, Jeanette  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t eLife  |d Cambridge : eLife Sciences Publications, 2012  |g 11(2022), Artikel-ID e69013, Seite 1-31  |h Online-Ressource  |w (DE-627)728518384  |w (DE-600)2687154-3  |w (DE-576)372567576  |x 2050-084X  |7 nnas  |a Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows 
773 1 8 |g volume:11  |g year:2022  |g elocationid:e69013  |g pages:1-31  |g extent:31  |a Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows 
856 4 0 |u https://doi.org/10.7554/eLife.69013  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220815 
993 |a Article 
994 |a 2022 
998 |g 102801774X  |a Wade, Rebecca C.  |m 102801774X:Wade, Rebecca C.  |d 140000  |e 140000PW102801774X  |k 0/140000/  |p 9 
999 |a KXP-PPN1814334475  |e 4179316951 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1814334475"],"doi":["10.7554/eLife.69013"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"06 July 2022"}],"name":{"displayForm":["Olivia Eriksson, Upinder Singh Bhalla, Kim T. Blackwell, Sharon M. Crook, Daniel Keller, Andrei Kramer, Marja-Leena Linne, Ausra Saudargienė, Rebecca C. Wade, Jeanette Hellgren Kotaleski"]},"recId":"1814334475","person":[{"family":"Eriksson","role":"aut","given":"Olivia","display":"Eriksson, Olivia"},{"role":"aut","given":"Upinder Singh","family":"Bhalla","display":"Bhalla, Upinder Singh"},{"display":"Blackwell, Kim T.","family":"Blackwell","role":"aut","given":"Kim T."},{"display":"Crook, Sharon M.","family":"Crook","given":"Sharon M.","role":"aut"},{"display":"Keller, Daniel","family":"Keller","role":"aut","given":"Daniel"},{"display":"Kramer, Andrei","family":"Kramer","role":"aut","given":"Andrei"},{"family":"Linne","role":"aut","given":"Marja-Leena","display":"Linne, Marja-Leena"},{"family":"Saudargienė","given":"Ausra","role":"aut","display":"Saudargienė, Ausra"},{"family":"Wade","given":"Rebecca C.","role":"aut","display":"Wade, Rebecca C."},{"family":"Hellgren Kotaleski","role":"aut","given":"Jeanette","display":"Hellgren Kotaleski, Jeanette"}],"title":[{"title":"Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows","title_sort":"Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"physDesc":[{"extent":"31 S."}],"relHost":[{"title":[{"title_sort":"eLife","title":"eLife"}],"note":["Gesehen am 28.06.17"],"titleAlt":[{"title":"eLife journal"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.2012 -"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2012-","publisher":"eLife Sciences Publications","dateIssuedKey":"2012","publisherPlace":"Cambridge"}],"id":{"eki":["728518384"],"issn":["2050-084X"],"zdb":["2687154-3"]},"part":{"pages":"1-31","volume":"11","extent":"31","text":"11(2022), Artikel-ID e69013, Seite 1-31","year":"2022"},"recId":"728518384","disp":"Combining hypothesis- and data-driven neuroscience modeling in FAIR workflowseLife"}],"note":["Gesehen am 15.08.2022"]} 
SRT |a ERIKSSONOLCOMBININGH0620