Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and Ks infrared wave bands by deep learning

RR Lyrae stars are useful chemical tracers thanks to the empirical relationship between their heavy-element abundance and the shape of their light curves. However, the consistent and accurate calibration of this relation across multiple photometric wave bands has been lacking. We have devised a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dékány, István (VerfasserIn) , Grebel, Eva K. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022 July 29
In: The astrophysical journal. Supplement series
Year: 2022, Jahrgang: 261, Heft: 2, Pages: 1-14
ISSN:1538-4365
DOI:10.3847/1538-4365/ac74ba
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.3847/1538-4365/ac74ba
Volltext
Verfasserangaben:István Dékány and Eva K. Grebel

MARC

LEADER 00000caa a2200000 c 4500
001 1814531459
003 DE-627
005 20230118153444.0
007 cr uuu---uuuuu
008 220817s2022 xx |||||o 00| ||eng c
024 7 |a 10.3847/1538-4365/ac74ba  |2 doi 
035 |a (DE-627)1814531459 
035 |a (DE-599)KXP1814531459 
035 |a (OCoLC)1361708991 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Dékány, István  |e VerfasserIn  |0 (DE-588)1141819686  |0 (DE-627)1000776867  |0 (DE-576)494530308  |4 aut 
245 1 0 |a Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and Ks infrared wave bands by deep learning  |c István Dékány and Eva K. Grebel 
246 3 3 |a Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and K s infrared wave bands by deep learning 
264 1 |c 2022 July 29 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist der Buchstabe "s" bei "Ks" tiefgestellt 
500 |a Gesehen am 17.08.2022 
520 |a RR Lyrae stars are useful chemical tracers thanks to the empirical relationship between their heavy-element abundance and the shape of their light curves. However, the consistent and accurate calibration of this relation across multiple photometric wave bands has been lacking. We have devised a new method for the metallicity estimation of fundamental-mode RR Lyrae stars in the Gaia optical G and near-infrared VISTA K s wave bands by deep learning. First, an existing metallicity prediction method is applied to large photometric data sets, which are then used to train long short-term memory recurrent neural networks for the regression of the [Fe/H] to the light curves in other wave bands. This approach allows an unbiased transfer of our accurate, spectroscopically calibrated I-band formula to additional bands at the expense of minimal additional noise. We achieve a low mean absolute error of 0.1 dex and high R 2 regression performance of 0.84 and 0.93 for the K s and G bands, respectively, measured by cross-validation. The resulting predictive models are deployed on the Gaia DR2 and VVV inner bulge RR Lyrae catalogs. We estimate mean metallicities of −1.35 dex for the inner bulge and −1.7 dex for the halo, which are significantly less than the values obtained by earlier photometric prediction methods. Using our results, we establish a public catalog of photometric metallicities of over 60,000 Galactic RR Lyrae stars and provide an all-sky map of the resulting RR Lyrae metallicity distribution. The software code used for training and deploying our recurrent neural networks is made publicly available in the open-source domain. 
700 1 |a Grebel, Eva K.  |d 1966-  |e VerfasserIn  |0 (DE-588)1020239085  |0 (DE-627)691153221  |0 (DE-576)359782833  |4 aut 
773 0 8 |i Enthalten in  |t The astrophysical journal. Supplement series  |d London : Institute of Physics Publ., 1996  |g 261(2022), 2, Artikel-ID 33, Seite 1-14  |h Online-Ressource  |w (DE-627)312200196  |w (DE-600)2006860-8  |w (DE-576)090890892  |x 1538-4365  |7 nnas  |a Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and Ks infrared wave bands by deep learning 
773 1 8 |g volume:261  |g year:2022  |g number:2  |g elocationid:33  |g pages:1-14  |g extent:14  |a Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and Ks infrared wave bands by deep learning 
856 4 0 |u https://doi.org/10.3847/1538-4365/ac74ba  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220817 
993 |a Article 
994 |a 2022 
998 |g 1020239085  |a Grebel, Eva K.  |m 1020239085:Grebel, Eva K.  |d 700000  |d 714000  |d 714100  |e 700000PG1020239085  |e 714000PG1020239085  |e 714100PG1020239085  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714100/  |p 2  |y j 
998 |g 1141819686  |a Dékány, István  |m 1141819686:Dékány, István  |d 500000  |d 500881  |e 500000PD1141819686  |e 500881PD1141819686  |k 0/500000/  |k 1/500000/500881/  |p 1  |x j 
999 |a KXP-PPN1814531459  |e 4179979713 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"name":{"displayForm":["István Dékány and Eva K. Grebel"]},"title":[{"title_sort":"Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and Ks infrared wave bands by deep learning","title":"Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and Ks infrared wave bands by deep learning"}],"recId":"1814531459","id":{"doi":["10.3847/1538-4365/ac74ba"],"eki":["1814531459"]},"relHost":[{"title":[{"partname":"Supplement series","title":"The astrophysical journal","title_sort":"astrophysical journal"}],"disp":"Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and Ks infrared wave bands by deep learningThe astrophysical journal. Supplement series","recId":"312200196","pubHistory":["Nachgewiesen 107.1996,2 -"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"issue":"2","volume":"261","extent":"14","text":"261(2022), 2, Artikel-ID 33, Seite 1-14","pages":"1-14","year":"2022"},"note":["Gesehen am 26.08.25","Fortsetzung der Druck-Ausgabe"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1538-4365"],"eki":["312200196"],"zdb":["2006860-8"]},"titleAlt":[{"title":"The astrophysical journal / Supplement series"},{"title":"ApJS"}],"origin":[{"publisherPlace":"London ; Chicago, Ill. [u.a.]","publisher":"Institute of Physics Publ. ; Univ. of Chicago Press","dateIssuedKey":"1996","dateIssuedDisp":"1996-"}]}],"titleAlt":[{"title":"Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the gaia optical and K s infrared wave bands by deep learning"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2022 July 29"}],"person":[{"given":"István","role":"aut","display":"Dékány, István","family":"Dékány","roleDisplay":"VerfasserIn"},{"display":"Grebel, Eva K.","role":"aut","given":"Eva K.","roleDisplay":"VerfasserIn","family":"Grebel"}],"note":["Im Titel ist der Buchstabe \"s\" bei \"Ks\" tiefgestellt","Gesehen am 17.08.2022"],"physDesc":[{"extent":"14 S."}]} 
SRT |a DEKANYISTVPHOTOMETRI2022