Semi-supervised learning in cancer diagnostics

In cancer diagnostics, a considerable amount of data is acquired during routine work-up. Recently, machine learning has been used to build classifiers that are tasked with cancer detection and aid in clinical decision-making. Most of these classifiers are based on supervised learning (SL) that needs...

Full description

Saved in:
Bibliographic Details
Main Authors: Eckardt, Jan-Niklas (Author) , Bornhäuser, Martin (Author) , Wendt, Karsten (Author) , Middeke, Jan Moritz (Author)
Format: Article (Journal)
Language:English
Published: 14 July 2022
In: Frontiers in oncology
Year: 2022, Volume: 12, Pages: 1-10
ISSN:2234-943X
DOI:10.3389/fonc.2022.960984
Online Access:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.3389/fonc.2022.960984
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/articles/10.3389/fonc.2022.960984
Get full text
Author Notes:Jan-Niklas Eckardt, Martin Bornhäuser, Karsten Wendt and Jan Moritz Middeke

MARC

LEADER 00000caa a2200000 c 4500
001 1815762438
003 DE-627
005 20230427000556.0
007 cr uuu---uuuuu
008 220905s2022 xx |||||o 00| ||eng c
024 7 |a 10.3389/fonc.2022.960984  |2 doi 
035 |a (DE-627)1815762438 
035 |a (DE-599)KXP1815762438 
035 |a (OCoLC)1361696804 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Eckardt, Jan-Niklas  |d 1991-  |e VerfasserIn  |0 (DE-588)1222283484  |0 (DE-627)1741296919  |4 aut 
245 1 0 |a Semi-supervised learning in cancer diagnostics  |c Jan-Niklas Eckardt, Martin Bornhäuser, Karsten Wendt and Jan Moritz Middeke 
264 1 |c 14 July 2022 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.09.2022 
520 |a In cancer diagnostics, a considerable amount of data is acquired during routine work-up. Recently, machine learning has been used to build classifiers that are tasked with cancer detection and aid in clinical decision-making. Most of these classifiers are based on supervised learning (SL) that needs time- and cost-intensive manual labeling of samples by medical experts for model training. Semi-supervised learning (SSL), however, works with only a fraction of labeled data by including unlabeled samples for information abstraction and thus can utilize the vast discrepancy between available labeled data and overall available data in cancer diagnostics. In this review, we provide a comprehensive overview of essential functionalities and assumptions of SSL and survey key studies with regard to cancer care differentiating between image-based and non-image-based applications. We highlight current state-of-the-art models in histopathology, radiology and radiotherapy, as well as genomics. Further, we discuss potential pitfalls in SSL study design such as discrepancies in data distributions and comparison to baseline SL models, and point out future directions for SSL in oncology. We believe well-designed SSL models to strongly contribute to computer-guided diagnostics in malignant disease by overcoming current hinderances in the form of sparse labeled and abundant unlabeled data. 
700 1 |a Bornhäuser, Martin  |d 1966-  |e VerfasserIn  |0 (DE-588)1167559118  |0 (DE-627)1031176071  |0 (DE-576)511198817  |4 aut 
700 1 |a Wendt, Karsten  |d 1980-  |e VerfasserIn  |0 (DE-588)1109777655  |0 (DE-627)864358105  |0 (DE-576)475588525  |4 aut 
700 1 |a Middeke, Jan Moritz  |d 1980-  |e VerfasserIn  |0 (DE-588)1044764708  |0 (DE-627)77277319X  |0 (DE-576)398114358  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in oncology  |d Lausanne : Frontiers Media, 2011  |g 12(2022), Artikel-ID 960984, Seite 1-10  |h Online-Ressource  |w (DE-627)684965518  |w (DE-600)2649216-7  |w (DE-576)35841184X  |x 2234-943X  |7 nnas  |a Semi-supervised learning in cancer diagnostics 
773 1 8 |g volume:12  |g year:2022  |g elocationid:960984  |g pages:1-10  |g extent:10  |a Semi-supervised learning in cancer diagnostics 
856 4 0 |u https://doi.org/10.3389/fonc.2022.960984  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fonc.2022.960984  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220905 
993 |a Article 
994 |a 2022 
998 |g 1167559118  |a Bornhäuser, Martin  |m 1167559118:Bornhäuser, Martin  |p 2 
999 |a KXP-PPN1815762438  |e 4184644198 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"14 July 2022"}],"name":{"displayForm":["Jan-Niklas Eckardt, Martin Bornhäuser, Karsten Wendt and Jan Moritz Middeke"]},"recId":"1815762438","note":["Gesehen am 05.09.2022"],"physDesc":[{"extent":"10 S."}],"id":{"doi":["10.3389/fonc.2022.960984"],"eki":["1815762438"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Semi-supervised learning in cancer diagnostics","title_sort":"Semi-supervised learning in cancer diagnostics"}],"relHost":[{"disp":"Semi-supervised learning in cancer diagnosticsFrontiers in oncology","note":["Gesehen am 07.11.13"],"title":[{"title_sort":"Frontiers in oncology","title":"Frontiers in oncology"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"origin":[{"dateIssuedKey":"2011","publisherPlace":"Lausanne","dateIssuedDisp":"2011-","publisher":"Frontiers Media"}],"recId":"684965518","pubHistory":["2011 -"],"part":{"year":"2022","extent":"10","volume":"12","text":"12(2022), Artikel-ID 960984, Seite 1-10","pages":"1-10"},"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"zdb":["2649216-7"],"issn":["2234-943X"],"eki":["684965518"]}}],"language":["eng"],"person":[{"given":"Jan-Niklas","family":"Eckardt","role":"aut","display":"Eckardt, Jan-Niklas"},{"given":"Martin","family":"Bornhäuser","role":"aut","display":"Bornhäuser, Martin"},{"role":"aut","display":"Wendt, Karsten","given":"Karsten","family":"Wendt"},{"display":"Middeke, Jan Moritz","role":"aut","family":"Middeke","given":"Jan Moritz"}]} 
SRT |a ECKARDTJANSEMISUPERV1420