Nonrelativistic scale anomaly, and composite operators with complex scaling dimensions

It is demonstrated that a nonrelativistic quantum scale anomaly manifests itself in the appearance of composite operators with complex scaling dimensions. In particular, we study nonrelativistic quantum mechanics with an inverse square potential and consider a composite s-wave operator O=ψψ. We anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Moroz, Sergej (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 January 2011
In: Annals of physics
Year: 2011, Jahrgang: 326, Heft: 5, Pages: 1368-1380
DOI:10.1016/j.aop.2011.01.003
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aop.2011.01.003
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S000349161100011X
Volltext
Verfasserangaben:Sergej Moroz
Beschreibung
Zusammenfassung:It is demonstrated that a nonrelativistic quantum scale anomaly manifests itself in the appearance of composite operators with complex scaling dimensions. In particular, we study nonrelativistic quantum mechanics with an inverse square potential and consider a composite s-wave operator O=ψψ. We analytically compute the scaling dimension of this operator and determine the propagator 〈0|TOO†|0〉. The operator O represents an infinite tower of bound states with a geometric energy spectrum. Operators with higher angular momenta are briefly discussed.
Beschreibung:Gesehen am 08.09.2022
Beschreibung:Online Resource
DOI:10.1016/j.aop.2011.01.003