Cataclysms for Anosov representations

In this paper, we construct cataclysm deformations for theta-Anosov representations into a semisimple non-compact connected real Lie group G with finite center, where theta subset of Lambda is a subset of the simple roots that is invariant under the opposition involution. These generalize Thurston&#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pfeil, Mareike (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 August 2022
In: Geometriae dedicata
Year: 2022, Jahrgang: 216, Heft: 6, Pages: 1-31
ISSN:1572-9168
DOI:10.1007/s10711-022-00721-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10711-022-00721-7
Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1007%2Fs10711-022-00721-7&DestApp=DOI&SrcAppSID=EUW1ED0D0C2jO9km2MrNzV1Zvicjd&SrcJTitle=GEOMETRIAE+DEDICATA&DestDOIRegistrantName=Springer-Verlag
Volltext
Verfasserangaben:Mareike Pfeil

MARC

LEADER 00000caa a2200000 c 4500
001 1816348767
003 DE-627
005 20240111080104.0
007 cr uuu---uuuuu
008 220909s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10711-022-00721-7  |2 doi 
035 |a (DE-627)1816348767 
035 |a (DE-599)KXP1816348767 
035 |a (OCoLC)1361696610 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Pfeil, Mareike  |d 1993-  |e VerfasserIn  |0 (DE-588)1242440526  |0 (DE-627)1772313793  |4 aut 
245 1 0 |a Cataclysms for Anosov representations  |c Mareike Pfeil 
264 1 |c 17 August 2022 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.09.2022 
520 |a In this paper, we construct cataclysm deformations for theta-Anosov representations into a semisimple non-compact connected real Lie group G with finite center, where theta subset of Lambda is a subset of the simple roots that is invariant under the opposition involution. These generalize Thurston's cataclysms on Teichmiiller space and Dreyer's cataclysms for Borel-Anosov representations into PSL(n, R). We express the deformation also in terms of the boundary map. Furthermore, we show that cataclysm deformations arc additive and behave well with respect to composing a representation with a group homomorphism. Finally, we show that the deformation is injective for Hitchin representations, but not in general for theta-Anosov representations. 
650 4 |a Anosov representations 
650 4 |a Cataclysms 
650 4 |a Discrete subgroups of Lie groups 
650 4 |a surface groups 
773 0 8 |i Enthalten in  |t Geometriae dedicata  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972  |g 216(2022), 6, Artikel-ID 61, Seite 1-31  |h Online-Ressource  |w (DE-627)270127585  |w (DE-600)1476497-0  |w (DE-576)104194103  |x 1572-9168  |7 nnas  |a Cataclysms for Anosov representations 
773 1 8 |g volume:216  |g year:2022  |g number:6  |g elocationid:61  |g pages:1-31  |g extent:31  |a Cataclysms for Anosov representations 
856 4 0 |u https://doi.org/10.1007/s10711-022-00721-7  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1007%2Fs10711-022-00721-7&DestApp=DOI&SrcAppSID=EUW1ED0D0C2jO9km2MrNzV1Zvicjd&SrcJTitle=GEOMETRIAE+DEDICATA&DestDOIRegistrantName=Springer-Verlag  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220909 
993 |a Article 
994 |a 2022 
998 |g 1242440526  |a Pfeil, Mareike  |m 1242440526:Pfeil, Mareike  |p 1  |x j  |y j 
999 |a KXP-PPN1816348767  |e 4186322155 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Mareike","family":"Pfeil","role":"aut","display":"Pfeil, Mareike","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Cataclysms for Anosov representations","title":"Cataclysms for Anosov representations"}],"note":["Gesehen am 09.09.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1816348767","name":{"displayForm":["Mareike Pfeil"]},"origin":[{"dateIssuedDisp":"17 August 2022","dateIssuedKey":"2022"}],"id":{"doi":["10.1007/s10711-022-00721-7"],"eki":["1816348767"]},"physDesc":[{"extent":"31 S."}],"relHost":[{"title":[{"title_sort":"Geometriae dedicata","title":"Geometriae dedicata"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Cataclysms for Anosov representationsGeometriae dedicata","note":["Gesehen am 01.12.05"],"recId":"270127585","language":["eng"],"pubHistory":["1.1972/73 -"],"part":{"volume":"216","text":"216(2022), 6, Artikel-ID 61, Seite 1-31","extent":"31","year":"2022","pages":"1-31","issue":"6"},"origin":[{"dateIssuedDisp":"1972-","dateIssuedKey":"1972","publisher":"Springer Science + Business Media B.V ; Kluwer","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"eki":["270127585"],"zdb":["1476497-0"],"issn":["1572-9168"]},"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a PFEILMAREICATACLYSMS1720