Cataclysms for Anosov representations
In this paper, we construct cataclysm deformations for theta-Anosov representations into a semisimple non-compact connected real Lie group G with finite center, where theta subset of Lambda is a subset of the simple roots that is invariant under the opposition involution. These generalize Thurston...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
17 August 2022
|
| In: |
Geometriae dedicata
Year: 2022, Jahrgang: 216, Heft: 6, Pages: 1-31 |
| ISSN: | 1572-9168 |
| DOI: | 10.1007/s10711-022-00721-7 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10711-022-00721-7 Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1007%2Fs10711-022-00721-7&DestApp=DOI&SrcAppSID=EUW1ED0D0C2jO9km2MrNzV1Zvicjd&SrcJTitle=GEOMETRIAE+DEDICATA&DestDOIRegistrantName=Springer-Verlag |
| Verfasserangaben: | Mareike Pfeil |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1816348767 | ||
| 003 | DE-627 | ||
| 005 | 20240111080104.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220909s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10711-022-00721-7 |2 doi | |
| 035 | |a (DE-627)1816348767 | ||
| 035 | |a (DE-599)KXP1816348767 | ||
| 035 | |a (OCoLC)1361696610 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Pfeil, Mareike |d 1993- |e VerfasserIn |0 (DE-588)1242440526 |0 (DE-627)1772313793 |4 aut | |
| 245 | 1 | 0 | |a Cataclysms for Anosov representations |c Mareike Pfeil |
| 264 | 1 | |c 17 August 2022 | |
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 09.09.2022 | ||
| 520 | |a In this paper, we construct cataclysm deformations for theta-Anosov representations into a semisimple non-compact connected real Lie group G with finite center, where theta subset of Lambda is a subset of the simple roots that is invariant under the opposition involution. These generalize Thurston's cataclysms on Teichmiiller space and Dreyer's cataclysms for Borel-Anosov representations into PSL(n, R). We express the deformation also in terms of the boundary map. Furthermore, we show that cataclysm deformations arc additive and behave well with respect to composing a representation with a group homomorphism. Finally, we show that the deformation is injective for Hitchin representations, but not in general for theta-Anosov representations. | ||
| 650 | 4 | |a Anosov representations | |
| 650 | 4 | |a Cataclysms | |
| 650 | 4 | |a Discrete subgroups of Lie groups | |
| 650 | 4 | |a surface groups | |
| 773 | 0 | 8 | |i Enthalten in |t Geometriae dedicata |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 |g 216(2022), 6, Artikel-ID 61, Seite 1-31 |h Online-Ressource |w (DE-627)270127585 |w (DE-600)1476497-0 |w (DE-576)104194103 |x 1572-9168 |7 nnas |a Cataclysms for Anosov representations |
| 773 | 1 | 8 | |g volume:216 |g year:2022 |g number:6 |g elocationid:61 |g pages:1-31 |g extent:31 |a Cataclysms for Anosov representations |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10711-022-00721-7 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1007%2Fs10711-022-00721-7&DestApp=DOI&SrcAppSID=EUW1ED0D0C2jO9km2MrNzV1Zvicjd&SrcJTitle=GEOMETRIAE+DEDICATA&DestDOIRegistrantName=Springer-Verlag |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220909 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1242440526 |a Pfeil, Mareike |m 1242440526:Pfeil, Mareike |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1816348767 |e 4186322155 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Mareike","family":"Pfeil","role":"aut","display":"Pfeil, Mareike","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Cataclysms for Anosov representations","title":"Cataclysms for Anosov representations"}],"note":["Gesehen am 09.09.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1816348767","name":{"displayForm":["Mareike Pfeil"]},"origin":[{"dateIssuedDisp":"17 August 2022","dateIssuedKey":"2022"}],"id":{"doi":["10.1007/s10711-022-00721-7"],"eki":["1816348767"]},"physDesc":[{"extent":"31 S."}],"relHost":[{"title":[{"title_sort":"Geometriae dedicata","title":"Geometriae dedicata"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Cataclysms for Anosov representationsGeometriae dedicata","note":["Gesehen am 01.12.05"],"recId":"270127585","language":["eng"],"pubHistory":["1.1972/73 -"],"part":{"volume":"216","text":"216(2022), 6, Artikel-ID 61, Seite 1-31","extent":"31","year":"2022","pages":"1-31","issue":"6"},"origin":[{"dateIssuedDisp":"1972-","dateIssuedKey":"1972","publisher":"Springer Science + Business Media B.V ; Kluwer","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"eki":["270127585"],"zdb":["1476497-0"],"issn":["1572-9168"]},"physDesc":[{"extent":"Online-Ressource"}]}]} | ||
| SRT | |a PFEILMAREICATACLYSMS1720 | ||