Cataclysms for Anosov representations

In this paper, we construct cataclysm deformations for theta-Anosov representations into a semisimple non-compact connected real Lie group G with finite center, where theta subset of Lambda is a subset of the simple roots that is invariant under the opposition involution. These generalize Thurston&#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pfeil, Mareike (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 August 2022
In: Geometriae dedicata
Year: 2022, Jahrgang: 216, Heft: 6, Pages: 1-31
ISSN:1572-9168
DOI:10.1007/s10711-022-00721-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10711-022-00721-7
Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1007%2Fs10711-022-00721-7&DestApp=DOI&SrcAppSID=EUW1ED0D0C2jO9km2MrNzV1Zvicjd&SrcJTitle=GEOMETRIAE+DEDICATA&DestDOIRegistrantName=Springer-Verlag
Volltext
Verfasserangaben:Mareike Pfeil
Beschreibung
Zusammenfassung:In this paper, we construct cataclysm deformations for theta-Anosov representations into a semisimple non-compact connected real Lie group G with finite center, where theta subset of Lambda is a subset of the simple roots that is invariant under the opposition involution. These generalize Thurston's cataclysms on Teichmiiller space and Dreyer's cataclysms for Borel-Anosov representations into PSL(n, R). We express the deformation also in terms of the boundary map. Furthermore, we show that cataclysm deformations arc additive and behave well with respect to composing a representation with a group homomorphism. Finally, we show that the deformation is injective for Hitchin representations, but not in general for theta-Anosov representations.
Beschreibung:Gesehen am 09.09.2022
Beschreibung:Online Resource
ISSN:1572-9168
DOI:10.1007/s10711-022-00721-7