Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data

We analyze the spectral function of the single-impurity two-terminal Anderson model at finite voltage using the recently developed diagrammatic quantum Monte Carlo technique as well as perturbation theory. In the (particle-hole-)symmetric case we find excellent agreement of the numerical data with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mühlbacher, Lothar (VerfasserIn) , Urban, Daniel F. (VerfasserIn) , Komnik, Andreas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 February 2011
In: Physical review. B, Condensed matter and materials physics
Year: 2011, Jahrgang: 83, Heft: 7, Pages: 1-7
ISSN:1550-235X
DOI:10.1103/PhysRevB.83.075107
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.83.075107
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.83.075107
Volltext
Verfasserangaben:L. Mühlbacher, D.F. Urban, and A. Komnik
Beschreibung
Zusammenfassung:We analyze the spectral function of the single-impurity two-terminal Anderson model at finite voltage using the recently developed diagrammatic quantum Monte Carlo technique as well as perturbation theory. In the (particle-hole-)symmetric case we find excellent agreement of the numerical data with the perturbative results of second order up to interaction strengths U/Γ≈2, where Γ is the transparency of the impurity-electrode interface. The analytical results are obtained in the form of the nonequilibrium self-energy for which we present explicit formulas in the closed form at arbitrary bias voltage. We observe an increase of the spectral density around zero energy brought about by the Kondo effect. Our analysis suggests that a finite applied voltage V acts as an effective temperature of the system. We conclude that at voltages significantly larger than the equilibrium Kondo temperature there is a complete suppression of the Kondo effect and no resonance splitting can be observed. We confirm this scenario by comparison of the numerical data with the perturbative results.
Beschreibung:Gesehen am 14.09.2022
Beschreibung:Online Resource
ISSN:1550-235X
DOI:10.1103/PhysRevB.83.075107