Relative entropic uncertainty relation

Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to observables with either discrete or continuous spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Flörchinger, Stefan (VerfasserIn) , Haas, Tobias (VerfasserIn) , Höber, Ben (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 4 June 2021
In: Physical review
Year: 2021, Jahrgang: 103, Heft: 6, Pages: 1-10
ISSN:2469-9934
DOI:10.1103/PhysRevA.103.062209
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.103.062209
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.103.062209
Volltext
Verfasserangaben:Stefan Floerchinger, Tobias Haas, and Ben Hoeber
Beschreibung
Zusammenfassung:Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to observables with either discrete or continuous spectra. We find that a sum of relative entropies is bounded from above in a nontrivial way, which we illustrate with some examples.
Beschreibung:Gesehen am 15.09.2022
Beschreibung:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.103.062209