Relative entropic uncertainty relation
Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to observables with either discrete or continuous spec...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
4 June 2021
|
| In: |
Physical review
Year: 2021, Jahrgang: 103, Heft: 6, Pages: 1-10 |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.103.062209 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.103.062209 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.103.062209 |
| Verfasserangaben: | Stefan Floerchinger, Tobias Haas, and Ben Hoeber |
| Zusammenfassung: | Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to observables with either discrete or continuous spectra. We find that a sum of relative entropies is bounded from above in a nontrivial way, which we illustrate with some examples. |
|---|---|
| Beschreibung: | Gesehen am 15.09.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.103.062209 |