Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling

Sequential Monte Carlo methods (also known as particle filters and smoothers) are used for filtering and smoothing in general state-space models. These methods are based on importance sampling. In practice, it is often difficult to find a suitable proposal which allows effective importance sampling....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Neddermeyer, Jan Christoph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 Feb 2011
In: The journal of statistical computation and simulation
Year: 2011, Jahrgang: 81, Heft: 11, Pages: 1361-1379
ISSN:1563-5163
DOI:10.1080/00949655.2010.485315
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/00949655.2010.485315
Volltext
Verfasserangaben:Jan C. Neddermeyer

MARC

LEADER 00000caa a2200000 c 4500
001 1817213865
003 DE-627
005 20230710114218.0
007 cr uuu---uuuuu
008 220921s2011 xx |||||o 00| ||eng c
024 7 |a 10.1080/00949655.2010.485315  |2 doi 
035 |a (DE-627)1817213865 
035 |a (DE-599)KXP1817213865 
035 |a (OCoLC)1389786025 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Neddermeyer, Jan Christoph  |e VerfasserIn  |0 (DE-588)141987111  |0 (DE-627)633507695  |0 (DE-576)327761946  |4 aut 
245 1 0 |a Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling  |c Jan C. Neddermeyer 
264 1 |c 15 Feb 2011 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.09.2022 
520 |a Sequential Monte Carlo methods (also known as particle filters and smoothers) are used for filtering and smoothing in general state-space models. These methods are based on importance sampling. In practice, it is often difficult to find a suitable proposal which allows effective importance sampling. This article develops an original particle filter and an original particle smoother which employ nonparametric importance sampling. The basic idea is to use a nonparametric estimate of the marginally optimal proposal. The proposed algorithms provide a better approximation of the filtering and smoothing distributions than standard methods. The methods’ advantage is most distinct in severely nonlinear situations. In contrast to most existing methods, they allow the use of quasi-Monte Carlo (QMC) sampling. In addition, they do not suffer from weight degeneration rendering a resampling step unnecessary. For the estimation of model parameters, an efficient on-line maximum-likelihood (ML) estimation technique is proposed which is also based on nonparametric approximations. All suggested algorithms have almost linear complexity for low-dimensional state-spaces. This is an advantage over standard smoothing and ML procedures. Particularly, all existing sequential Monte Carlo methods that incorporate QMC sampling have quadratic complexity. As an application, stochastic volatility estimation for high-frequency financial data is considered, which is of great importance in practice. The computer code is partly available as supplemental material. 
650 4 |a general state-space model 
650 4 |a high frequency 
650 4 |a multivariate frequency polygon 
650 4 |a multivariate stochastic volatility 
650 4 |a nonparametric density estimation 
650 4 |a sequential Monte Carlo 
773 0 8 |i Enthalten in  |t The journal of statistical computation and simulation  |d London [u.a.] : Taylor & Francis, 1972  |g 81(2011), 11, Seite 1361-1379  |h Online-Ressource  |w (DE-627)313649383  |w (DE-600)2004311-9  |w (DE-576)099138611  |x 1563-5163  |7 nnas  |a Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling 
773 1 8 |g volume:81  |g year:2011  |g number:11  |g pages:1361-1379  |g extent:19  |a Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling 
856 4 0 |u https://doi.org/10.1080/00949655.2010.485315  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220921 
993 |a Article 
994 |a 2011 
998 |g 141987111  |a Neddermeyer, Jan Christoph  |m 141987111:Neddermeyer, Jan Christoph  |p 1  |x j  |y j 
999 |a KXP-PPN1817213865  |e 4190512753 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Neddermeyer, Jan Christoph","role":"aut","family":"Neddermeyer","given":"Jan Christoph"}],"title":[{"title":"Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling","title_sort":"Nonparametric particle filtering and smoothing with quasi-Monte Carlo sampling"}],"note":["Gesehen am 21.09.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1817213865","language":["eng"],"name":{"displayForm":["Jan C. Neddermeyer"]},"origin":[{"dateIssuedDisp":"15 Feb 2011","dateIssuedKey":"2011"}],"id":{"eki":["1817213865"],"doi":["10.1080/00949655.2010.485315"]},"physDesc":[{"extent":"19 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Taylor & Francis","dateIssuedKey":"1972","dateIssuedDisp":"1972-","publisherPlace":"London [u.a.]"}],"id":{"issn":["1563-5163"],"zdb":["2004311-9"],"eki":["313649383"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 05.09.05"],"disp":"Nonparametric particle filtering and smoothing with quasi-Monte Carlo samplingThe journal of statistical computation and simulation","recId":"313649383","language":["eng"],"pubHistory":["1.1972 -"],"part":{"year":"2011","issue":"11","pages":"1361-1379","volume":"81","text":"81(2011), 11, Seite 1361-1379","extent":"19"},"title":[{"title_sort":"journal of statistical computation and simulation","title":"The journal of statistical computation and simulation","subtitle":"JSCS"}]}]} 
SRT |a NEDDERMEYENONPARAMET1520