Tiling with monochromatic bipartite graphs of bounded maximum degree

We prove that for any r∈N, there exists a constant Cr such that the following is true. Let F={F1,F2,…} be an infinite sequence of bipartite graphs such that |V(Fi)|=i and Δ(Fi)≤Δ hold for all i. Then in any r-edge coloured complete graph Kn, there is a collection of at most exp(CrΔ) monochromatic su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Girao, Antonio (VerfasserIn) , Janzer, Oliver (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 20 Sep 2021
In: Arxiv
Year: 2021, Pages: 1-18
DOI:10.48550/arXiv.2109.09642
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2109.09642
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2109.09642
Volltext
Verfasserangaben:António Girão and Oliver Janzer

MARC

LEADER 00000caa a2200000 c 4500
001 1817220144
003 DE-627
005 20240109110519.0
007 cr uuu---uuuuu
008 220921s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2109.09642  |2 doi 
035 |a (DE-627)1817220144 
035 |a (DE-599)KXP1817220144 
035 |a (OCoLC)1361714168 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Girao, Antonio  |e VerfasserIn  |0 (DE-588)1256755230  |0 (DE-627)1800839561  |4 aut 
245 1 0 |a Tiling with monochromatic bipartite graphs of bounded maximum degree  |c António Girão and Oliver Janzer 
264 1 |c 20 Sep 2021 
300 |b Illustrationen 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.01.2024 
520 |a We prove that for any r∈N, there exists a constant Cr such that the following is true. Let F={F1,F2,…} be an infinite sequence of bipartite graphs such that |V(Fi)|=i and Δ(Fi)≤Δ hold for all i. Then in any r-edge coloured complete graph Kn, there is a collection of at most exp(CrΔ) monochromatic subgraphs, each of which is isomorphic to an element of F, whose vertex sets partition V(Kn). This proves a conjecture of Corsten and Mendonça in a strong form and generalizes results on the multicolour Ramsey numbers of bounded-degree bipartite graphs. 
650 4 |a Mathematics - Combinatorics 
700 1 |a Janzer, Oliver  |e VerfasserIn  |0 (DE-588)131542438X  |0 (DE-627)1877498025  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 2109.09642, Seite 1-18  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Tiling with monochromatic bipartite graphs of bounded maximum degree 
773 1 8 |g year:2021  |g elocationid:2109.09642  |g pages:1-18  |g extent:18  |a Tiling with monochromatic bipartite graphs of bounded maximum degree 
856 4 0 |u https://doi.org/10.48550/arXiv.2109.09642  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2109.09642  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220921 
993 |a Article 
994 |a 2021 
998 |g 1256755230  |a Girao, Antonio  |m 1256755230:Girao, Antonio  |d 110000  |d 110300  |d 700000  |d 728500  |e 110000PG1256755230  |e 110300PG1256755230  |e 700000PG1256755230  |e 728500PG1256755230  |k 0/110000/  |k 1/110000/110300/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1817220144  |e 4190528145 
BIB |a Y 
JSO |a {"title":[{"title":"Tiling with monochromatic bipartite graphs of bounded maximum degree","title_sort":"Tiling with monochromatic bipartite graphs of bounded maximum degree"}],"person":[{"roleDisplay":"VerfasserIn","display":"Girao, Antonio","role":"aut","family":"Girao","given":"Antonio"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Janzer, Oliver","given":"Oliver","family":"Janzer"}],"language":["eng"],"recId":"1817220144","type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 09.01.2024"],"id":{"doi":["10.48550/arXiv.2109.09642"],"eki":["1817220144"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"20 Sep 2021"}],"name":{"displayForm":["António Girão and Oliver Janzer"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"disp":"Tiling with monochromatic bipartite graphs of bounded maximum degreeArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531","pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2021), Artikel-ID 2109.09642, Seite 1-18","extent":"18","year":"2021","pages":"1-18"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"physDesc":[{"noteIll":"Illustrationen","extent":"18 S."}]} 
SRT |a GIRAOANTONTILINGWITH2020