Sextic tensor model in rank 3 at next-to-leading order
We compute the four-loop beta functions of short and long-range multi scalar models with general sextic interactions and complex fields. We then specialize the beta functions to a $U(N)^3$ symmetry and study the renormalization group at next-to-leading order in $N$ and small $\epsilon$. In the short...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
16 Sep 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-23 |
| DOI: | 10.48550/arXiv.2109.08034 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.08034 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.08034 |
| Verfasserangaben: | Sabine Harribey |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1817221116 | ||
| 003 | DE-627 | ||
| 005 | 20230118161933.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220921s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2109.08034 |2 doi | |
| 035 | |a (DE-627)1817221116 | ||
| 035 | |a (DE-599)KXP1817221116 | ||
| 035 | |a (OCoLC)1361714306 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Harribey, Sabine |d 1995- |e VerfasserIn |0 (DE-588)1230883495 |0 (DE-627)1753224977 |4 aut | |
| 245 | 1 | 0 | |a Sextic tensor model in rank 3 at next-to-leading order |c Sabine Harribey |
| 246 | 3 | 0 | |a three |
| 264 | 1 | |c 16 Sep 2021 | |
| 300 | |a 23 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.09.2022 | ||
| 520 | |a We compute the four-loop beta functions of short and long-range multi scalar models with general sextic interactions and complex fields. We then specialize the beta functions to a $U(N)^3$ symmetry and study the renormalization group at next-to-leading order in $N$ and small $\epsilon$. In the short-range case, $\epsilon$ is the deviation from the critical dimension while it is the deviation from the critical scaling of the free propagator in the long-range case. This allows us to find the $1/N$ corrections to the rank-3 sextic tensor model of arXiv:1912.06641. In the short-range case, we still find a non-trivial real IR stable fixed point, with a diagonalizable stability matrix. All couplings, except for the so-called wheel coupling, have terms of order $\epsilon^0$ at leading and next-to-leading order, which makes this fixed point different from the other melonic fixed points found in quartic models. In the long-range case, the corrections to the fixed point are instead not perturbative in $\epsilon$ and hence unreliable; we thus find no precursor of the large-$N$ fixed point. | ||
| 650 | 4 | |a High Energy Physics - Theory | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 2109.08034, Seite 1-23 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Sextic tensor model in rank 3 at next-to-leading order |
| 773 | 1 | 8 | |g year:2021 |g elocationid:2109.08034 |g pages:1-23 |g extent:23 |a Sextic tensor model in rank 3 at next-to-leading order |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2109.08034 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2109.08034 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220921 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1230883495 |a Harribey, Sabine |m 1230883495:Harribey, Sabine |d 130000 |d 700000 |d 728500 |e 130000PH1230883495 |e 700000PH1230883495 |e 728500PH1230883495 |k 0/130000/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1817221116 |e 4190530344 | ||
| BIB | |a Y | ||
| JSO | |a {"name":{"displayForm":["Sabine Harribey"]},"id":{"eki":["1817221116"],"doi":["10.48550/arXiv.2109.08034"]},"origin":[{"dateIssuedDisp":"16 Sep 2021","dateIssuedKey":"2021"}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2021), Artikel-ID 2109.08034, Seite 1-23","extent":"23","year":"2021","pages":"1-23"},"disp":"Sextic tensor model in rank 3 at next-to-leading orderArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531","origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"23 S."}],"person":[{"role":"aut","display":"Harribey, Sabine","roleDisplay":"VerfasserIn","given":"Sabine","family":"Harribey"}],"title":[{"title":"Sextic tensor model in rank 3 at next-to-leading order","title_sort":"Sextic tensor model in rank 3 at next-to-leading order"}],"recId":"1817221116","language":["eng"],"note":["Gesehen am 28.09.2022"],"type":{"bibl":"chapter","media":"Online-Ressource"}} | ||
| SRT | |a HARRIBEYSASEXTICTENS1620 | ||