Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces
We study a convergence result of Bourgain--Brezis--Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces $W^{s,p} = F^{s}_{p,p}$, and $H^{1,p} = F^{1}_{p,2}$. When $s\to 1$, the $F^{s}_{p,p}$ norm becomes the $F^{1}_{p,p}$ norm but BBM showed that the $W^{s,p}$ norm becomes...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
9 Sep 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-24 |
| DOI: | 10.48550/arXiv.2109.04159 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.04159 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.04159 |
| Verfasserangaben: | Denis Brazke, Armin Schikorra, and Po-Lam Yung |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1817224743 | ||
| 003 | DE-627 | ||
| 005 | 20230118161921.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220921s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2109.04159 |2 doi | |
| 035 | |a (DE-627)1817224743 | ||
| 035 | |a (DE-599)KXP1817224743 | ||
| 035 | |a (OCoLC)1361714065 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Brazke, Denis |d 1994- |e VerfasserIn |0 (DE-588)1236043944 |0 (DE-627)1761290487 |4 aut | |
| 245 | 1 | 0 | |a Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces |c Denis Brazke, Armin Schikorra, and Po-Lam Yung |
| 264 | 1 | |c 9 Sep 2021 | |
| 300 | |a 24 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.09.2022 | ||
| 520 | |a We study a convergence result of Bourgain--Brezis--Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces $W^{s,p} = F^{s}_{p,p}$, and $H^{1,p} = F^{1}_{p,2}$. When $s\to 1$, the $F^{s}_{p,p}$ norm becomes the $F^{1}_{p,p}$ norm but BBM showed that the $W^{s,p}$ norm becomes the $H^{1,p} = F^{1}_{p,2}$ norm. Naively, for |p \neq 2$ this seems like a contradiction, but we resolve this by providing embeddings of $W^{s,p}$ into $F^{s}_{p,q}$ for |q \in \{p,2\}$ with sharp constants with respect to |s \in (0,1)$. As a consequence we obtain an $\mathbb{R}^N$-version of the BBM-result, and obtain several more embedding and convergence theorems of BBM-type that to the best of our knowledge are unknown. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 650 | 4 | |a Mathematics - Classical Analysis and ODEs | |
| 650 | 4 | |a Mathematics - Functional Analysis | |
| 700 | 1 | |a Schikorra, Armin |d 1983- |e VerfasserIn |0 (DE-588)142664332 |0 (DE-627)638450373 |0 (DE-576)332703584 |4 aut | |
| 700 | 1 | |a Yung, Po-Lam |e VerfasserIn |0 (DE-588)1269051555 |0 (DE-627)1817716190 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 2109.04159, Seite 1-24 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces |
| 773 | 1 | 8 | |g year:2021 |g elocationid:2109.04159 |g pages:1-24 |g extent:24 |a Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2109.04159 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2109.04159 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220921 | ||
| 993 | |a Article | ||
| 998 | |g 1236043944 |a Brazke, Denis |m 1236043944:Brazke, Denis |d 110000 |d 700000 |d 728500 |e 110000PB1236043944 |e 700000PB1236043944 |e 728500PB1236043944 |k 0/110000/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1817224743 |e 4190539260 | ||
| BIB | |a Y | ||
| JSO | |a {"physDesc":[{"extent":"24 S."}],"relHost":[{"language":["eng"],"recId":"509006531","type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spacesArxiv","note":["Gesehen am 28.05.2024"],"part":{"year":"2021","pages":"1-24","text":"(2021), Artikel-ID 2109.04159, Seite 1-24","extent":"24"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}]}],"origin":[{"dateIssuedDisp":"9 Sep 2021","dateIssuedKey":"2021"}],"id":{"doi":["10.48550/arXiv.2109.04159"],"eki":["1817224743"]},"name":{"displayForm":["Denis Brazke, Armin Schikorra, and Po-Lam Yung"]},"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 28.09.2022"],"recId":"1817224743","language":["eng"],"title":[{"title_sort":"Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces","title":"Bourgain-Brezis-Mironescu convergence via Triebel-Lizorkin spaces"}],"person":[{"role":"aut","display":"Brazke, Denis","roleDisplay":"VerfasserIn","given":"Denis","family":"Brazke"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Schikorra, Armin","given":"Armin","family":"Schikorra"},{"roleDisplay":"VerfasserIn","display":"Yung, Po-Lam","role":"aut","family":"Yung","given":"Po-Lam"}]} | ||
| SRT | |a BRAZKEDENIBOURGAINBR9202 | ||