Constraint propagation equations of the 3+1 decomposition of ƒ(R) gravity

Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term...

Full description

Saved in:
Bibliographic Details
Main Authors: Paschalidis, Vasileios (Author) , Halataei, Seyyed M. H. (Author) , Shapiro, Stuart L. (Author) , Sawicki, Ignacy (Author)
Format: Article (Journal)
Language:English
Published: 17 March 2011
In: Classical and quantum gravity
Year: 2011, Volume: 28, Issue: 8, Pages: 1-19
ISSN:1361-6382
DOI:10.1088/0264-9381/28/8/085006
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/0264-9381/28/8/085006
Get full text
Author Notes:Vasileios Paschalidis, Seyyed M.H. Halataei, Stuart L. Shapiro and Ignacy Sawicki

MARC

LEADER 00000caa a2200000 c 4500
001 1817274619
003 DE-627
005 20230710114036.0
007 cr uuu---uuuuu
008 220922s2011 xx |||||o 00| ||eng c
024 7 |a 10.1088/0264-9381/28/8/085006  |2 doi 
035 |a (DE-627)1817274619 
035 |a (DE-599)KXP1817274619 
035 |a (OCoLC)1389785523 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Paschalidis, Vasileios  |e VerfasserIn  |0 (DE-588)1268669199  |0 (DE-627)1817275771  |4 aut 
245 1 0 |a Constraint propagation equations of the 3+1 decomposition of ƒ(R) gravity  |c Vasileios Paschalidis, Seyyed M.H. Halataei, Stuart L. Shapiro and Ignacy Sawicki 
246 3 3 |a Constraint propagation equations of the 3 plus 1 decomposition of function (R) gravity 
264 1 |c 17 March 2011 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist "function" als mathematisches Zeichen dargestellt 
500 |a Gesehen am 22.09.2022 
520 |a Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term (ω = 0). Using this equivalence and a 3+1 decomposition of the theory, it has been shown that metric f(R) gravity admits a well-posed initial value problem. However, it has not been proven that the 3+1 evolution equations of metric f(R) gravity preserve the (Hamiltonian and momentum) constraints. In this paper, we show that this is indeed the case. In addition, we show that the mathematical form of the constraint propagation equations in BD-equilavent f(R) gravity and in f(R) gravity in both the Jordan and Einstein frames is exactly the same as in the standard ADM 3+1 decomposition of GR. Finally, we point out that current numerical relativity codes can incorporate the 3+1 evolution equations of metric f(R) gravity by modifying the stress-energy tensor and adding an additional scalar field evolution equation. We hope that this work will serve as a starting point for relativists to develop fully dynamical codes for valid f(R) models. 
700 1 |a Halataei, Seyyed M. H.  |e VerfasserIn  |4 aut 
700 1 |a Shapiro, Stuart L.  |e VerfasserIn  |4 aut 
700 1 |a Sawicki, Ignacy  |d 1977-  |e VerfasserIn  |0 (DE-588)1038777585  |0 (DE-627)766452360  |0 (DE-576)392817950  |4 aut 
773 0 8 |i Enthalten in  |t Classical and quantum gravity  |d Bristol : IOP Publ., 1984  |g 28(2011), 8, Artikel-ID 085006, Seite 1-19  |h Online-Ressource  |w (DE-627)268761310  |w (DE-600)1473117-4  |w (DE-576)077610490  |x 1361-6382  |7 nnas  |a Constraint propagation equations of the 3+1 decomposition of ƒ(R) gravity 
773 1 8 |g volume:28  |g year:2011  |g number:8  |g elocationid:085006  |g pages:1-19  |g extent:19  |a Constraint propagation equations of the 3+1 decomposition of ƒ(R) gravity 
856 4 0 |u https://doi.org/10.1088/0264-9381/28/8/085006  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220922 
993 |a Article 
994 |a 2011 
998 |g 1038777585  |a Sawicki, Ignacy  |m 1038777585:Sawicki, Ignacy  |d 130000  |d 130300  |e 130000PS1038777585  |e 130300PS1038777585  |k 0/130000/  |k 1/130000/130300/  |p 4  |y j 
999 |a KXP-PPN1817274619  |e 4190867217 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Paschalidis","given":"Vasileios","display":"Paschalidis, Vasileios","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Seyyed M. H.","family":"Halataei","role":"aut","roleDisplay":"VerfasserIn","display":"Halataei, Seyyed M. H."},{"given":"Stuart L.","family":"Shapiro","role":"aut","display":"Shapiro, Stuart L.","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sawicki, Ignacy","given":"Ignacy","family":"Sawicki"}],"title":[{"title":"Constraint propagation equations of the 3+1 decomposition of ƒ(R) gravity","title_sort":"Constraint propagation equations of the 3+1 decomposition of ƒ(R) gravity"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Im Titel ist \"function\" als mathematisches Zeichen dargestellt","Gesehen am 22.09.2022"],"recId":"1817274619","language":["eng"],"titleAlt":[{"title":"Constraint propagation equations of the 3 plus 1 decomposition of function (R) gravity"}],"name":{"displayForm":["Vasileios Paschalidis, Seyyed M.H. Halataei, Stuart L. Shapiro and Ignacy Sawicki"]},"origin":[{"dateIssuedDisp":"17 March 2011","dateIssuedKey":"2011"}],"id":{"doi":["10.1088/0264-9381/28/8/085006"],"eki":["1817274619"]},"physDesc":[{"extent":"19 S."}],"relHost":[{"note":["Gesehen am 14.12.18"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Constraint propagation equations of the 3+1 decomposition of ƒ(R) gravityClassical and quantum gravity","language":["eng"],"recId":"268761310","pubHistory":["1.1984 -"],"part":{"pages":"1-19","issue":"8","year":"2011","extent":"19","volume":"28","text":"28(2011), 8, Artikel-ID 085006, Seite 1-19"},"title":[{"title":"Classical and quantum gravity","title_sort":"Classical and quantum gravity"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"IOP Publ.","dateIssuedKey":"1984","dateIssuedDisp":"1984-","publisherPlace":"Bristol"}],"id":{"issn":["1361-6382"],"zdb":["1473117-4"],"eki":["268761310"]}}]} 
SRT |a PASCHALIDICONSTRAINT1720