Symplectic groups over noncommutative algebras
We introduce the symplectic group $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$over a noncommutative algebra A with an anti-involution $$\sigma $$. We realize several classical Lie groups as $${{\,\mathrm{Sp}\,}}_2$$over various noncommutative algebras, which provides new insights into their structure theory...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
12 September 2022
|
| In: |
Selecta mathematica
Year: 2022, Volume: 28, Issue: 4, Pages: 1-119 |
| ISSN: | 1420-9020 |
| DOI: | 10.1007/s00029-022-00787-x |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00029-022-00787-x |
| Author Notes: | Daniele Alessandrini, Arkady Berenstein, Vladimir Retakh, Eugen Rogozinnikov, Anna Wienhard |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1817283103 | ||
| 003 | DE-627 | ||
| 005 | 20230118144458.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220922s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00029-022-00787-x |2 doi | |
| 035 | |a (DE-627)1817283103 | ||
| 035 | |a (DE-599)KXP1817283103 | ||
| 035 | |a (OCoLC)1361696336 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Alessandrini, Daniele |e VerfasserIn |0 (DE-588)1073901270 |0 (DE-627)829779280 |0 (DE-576)435393227 |4 aut | |
| 245 | 1 | 0 | |a Symplectic groups over noncommutative algebras |c Daniele Alessandrini, Arkady Berenstein, Vladimir Retakh, Eugen Rogozinnikov, Anna Wienhard |
| 264 | 1 | |c 12 September 2022 | |
| 300 | |a 119 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 23.09.2022 | ||
| 520 | |a We introduce the symplectic group $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$over a noncommutative algebra A with an anti-involution $$\sigma $$. We realize several classical Lie groups as $${{\,\mathrm{Sp}\,}}_2$$over various noncommutative algebras, which provides new insights into their structure theory. We construct several geometric spaces, on which the groups $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$act. We introduce the space of isotropic A-lines, which generalizes the projective line. We describe the action of $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$on isotropic A-lines, generalize the Kashiwara-Maslov index of triples and the cross ratio of quadruples of isotropic A-lines as invariants of this action. When the algebra A is Hermitian or the complexification of a Hermitian algebra, we introduce the symmetric space $$X_{{{\,\mathrm{Sp}\,}}_2(A,\sigma )}$$, and construct different models of this space. Applying this to classical Hermitian Lie groups of tube type (realized as $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$) and their complexifications, we obtain different models of the symmetric space as noncommutative generalizations of models of the hyperbolic plane and of the three-dimensional hyperbolic space. We also provide a partial classification of Hermitian algebras in Appendix A. | ||
| 650 | 4 | |a 16W10 | |
| 650 | 4 | |a 32M15 | |
| 650 | 4 | |a 46L05 | |
| 650 | 4 | |a 53C35 | |
| 650 | 4 | |a Hermitian algebra | |
| 650 | 4 | |a Hermitian Lie group | |
| 650 | 4 | |a Hermitian symmetric space | |
| 650 | 4 | |a Involutive algebra | |
| 650 | 4 | |a Jordan algebra | |
| 700 | 1 | |a Berenstein, Arkady |d 1966- |e VerfasserIn |0 (DE-588)1083044672 |0 (DE-627)847855481 |0 (DE-576)455635013 |4 aut | |
| 700 | 1 | |a Retakh, Vladimir |d 1948- |e VerfasserIn |0 (DE-588)108304589X |0 (DE-627)847856518 |0 (DE-576)455636419 |4 aut | |
| 700 | 1 | |a Rogozinnikov, Eugen |e VerfasserIn |4 aut | |
| 700 | 1 | |a Wienhard, Anna |d 1977- |e VerfasserIn |0 (DE-588)137817975 |0 (DE-627)696086891 |0 (DE-576)305331280 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Selecta mathematica |d Basel [u.a.] : Birkhäuser, 1995 |g 28(2022), 4, Artikel-ID 82, Seite 1-119 |h Online-Ressource |w (DE-627)254638821 |w (DE-600)1462998-7 |w (DE-576)078589819 |x 1420-9020 |7 nnas |a Symplectic groups over noncommutative algebras |
| 773 | 1 | 8 | |g volume:28 |g year:2022 |g number:4 |g elocationid:82 |g pages:1-119 |g extent:119 |a Symplectic groups over noncommutative algebras |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00029-022-00787-x |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220922 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 137817975 |a Wienhard, Anna |m 137817975:Wienhard, Anna |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PW137817975 |e 110100PW137817975 |e 110000PW137817975 |e 110400PW137817975 |e 700000PW137817975 |e 728500PW137817975 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 5 |y j | ||
| 999 | |a KXP-PPN1817283103 |e 4190885673 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"119 S."}],"relHost":[{"disp":"Symplectic groups over noncommutative algebrasSelecta mathematica","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.12.05"],"language":["eng"],"recId":"254638821","pubHistory":["N.S. 1.1995 -"],"titleAlt":[{"title":"SM"}],"part":{"volume":"28","text":"28(2022), 4, Artikel-ID 82, Seite 1-119","extent":"119","year":"2022","issue":"4","pages":"1-119"},"title":[{"title_sort":"Selecta mathematica","subtitle":"SM","title":"Selecta mathematica"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Basel [u.a.] ; Berlin","dateIssuedDisp":"1995-","dateIssuedKey":"1995","publisher":"Birkhäuser"}],"id":{"issn":["1420-9020"],"zdb":["1462998-7"],"eki":["254638821"]}}],"origin":[{"dateIssuedDisp":"12 September 2022","dateIssuedKey":"2022"}],"id":{"doi":["10.1007/s00029-022-00787-x"],"eki":["1817283103"]},"name":{"displayForm":["Daniele Alessandrini, Arkady Berenstein, Vladimir Retakh, Eugen Rogozinnikov, Anna Wienhard"]},"note":["Gesehen am 23.09.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1817283103","title":[{"title_sort":"Symplectic groups over noncommutative algebras","title":"Symplectic groups over noncommutative algebras"}],"person":[{"roleDisplay":"VerfasserIn","display":"Alessandrini, Daniele","role":"aut","family":"Alessandrini","given":"Daniele"},{"family":"Berenstein","given":"Arkady","display":"Berenstein, Arkady","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Retakh, Vladimir","role":"aut","family":"Retakh","given":"Vladimir"},{"role":"aut","display":"Rogozinnikov, Eugen","roleDisplay":"VerfasserIn","given":"Eugen","family":"Rogozinnikov"},{"family":"Wienhard","given":"Anna","display":"Wienhard, Anna","roleDisplay":"VerfasserIn","role":"aut"}]} | ||
| SRT | |a ALESSANDRISYMPLECTIC1220 | ||