Symplectic groups over noncommutative algebras

We introduce the symplectic group $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$over a noncommutative algebra A with an anti-involution $$\sigma $$. We realize several classical Lie groups as $${{\,\mathrm{Sp}\,}}_2$$over various noncommutative algebras, which provides new insights into their structure theory...

Full description

Saved in:
Bibliographic Details
Main Authors: Alessandrini, Daniele (Author) , Berenstein, Arkady (Author) , Retakh, Vladimir (Author) , Rogozinnikov, Eugen (Author) , Wienhard, Anna (Author)
Format: Article (Journal)
Language:English
Published: 12 September 2022
In: Selecta mathematica
Year: 2022, Volume: 28, Issue: 4, Pages: 1-119
ISSN:1420-9020
DOI:10.1007/s00029-022-00787-x
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00029-022-00787-x
Get full text
Author Notes:Daniele Alessandrini, Arkady Berenstein, Vladimir Retakh, Eugen Rogozinnikov, Anna Wienhard

MARC

LEADER 00000caa a2200000 c 4500
001 1817283103
003 DE-627
005 20230118144458.0
007 cr uuu---uuuuu
008 220922s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00029-022-00787-x  |2 doi 
035 |a (DE-627)1817283103 
035 |a (DE-599)KXP1817283103 
035 |a (OCoLC)1361696336 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Alessandrini, Daniele  |e VerfasserIn  |0 (DE-588)1073901270  |0 (DE-627)829779280  |0 (DE-576)435393227  |4 aut 
245 1 0 |a Symplectic groups over noncommutative algebras  |c Daniele Alessandrini, Arkady Berenstein, Vladimir Retakh, Eugen Rogozinnikov, Anna Wienhard 
264 1 |c 12 September 2022 
300 |a 119 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.09.2022 
520 |a We introduce the symplectic group $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$over a noncommutative algebra A with an anti-involution $$\sigma $$. We realize several classical Lie groups as $${{\,\mathrm{Sp}\,}}_2$$over various noncommutative algebras, which provides new insights into their structure theory. We construct several geometric spaces, on which the groups $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$act. We introduce the space of isotropic A-lines, which generalizes the projective line. We describe the action of $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$on isotropic A-lines, generalize the Kashiwara-Maslov index of triples and the cross ratio of quadruples of isotropic A-lines as invariants of this action. When the algebra A is Hermitian or the complexification of a Hermitian algebra, we introduce the symmetric space $$X_{{{\,\mathrm{Sp}\,}}_2(A,\sigma )}$$, and construct different models of this space. Applying this to classical Hermitian Lie groups of tube type (realized as $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$) and their complexifications, we obtain different models of the symmetric space as noncommutative generalizations of models of the hyperbolic plane and of the three-dimensional hyperbolic space. We also provide a partial classification of Hermitian algebras in Appendix A. 
650 4 |a 16W10 
650 4 |a 32M15 
650 4 |a 46L05 
650 4 |a 53C35 
650 4 |a Hermitian algebra 
650 4 |a Hermitian Lie group 
650 4 |a Hermitian symmetric space 
650 4 |a Involutive algebra 
650 4 |a Jordan algebra 
700 1 |a Berenstein, Arkady  |d 1966-  |e VerfasserIn  |0 (DE-588)1083044672  |0 (DE-627)847855481  |0 (DE-576)455635013  |4 aut 
700 1 |a Retakh, Vladimir  |d 1948-  |e VerfasserIn  |0 (DE-588)108304589X  |0 (DE-627)847856518  |0 (DE-576)455636419  |4 aut 
700 1 |a Rogozinnikov, Eugen  |e VerfasserIn  |4 aut 
700 1 |a Wienhard, Anna  |d 1977-  |e VerfasserIn  |0 (DE-588)137817975  |0 (DE-627)696086891  |0 (DE-576)305331280  |4 aut 
773 0 8 |i Enthalten in  |t Selecta mathematica  |d Basel [u.a.] : Birkhäuser, 1995  |g 28(2022), 4, Artikel-ID 82, Seite 1-119  |h Online-Ressource  |w (DE-627)254638821  |w (DE-600)1462998-7  |w (DE-576)078589819  |x 1420-9020  |7 nnas  |a Symplectic groups over noncommutative algebras 
773 1 8 |g volume:28  |g year:2022  |g number:4  |g elocationid:82  |g pages:1-119  |g extent:119  |a Symplectic groups over noncommutative algebras 
856 4 0 |u https://doi.org/10.1007/s00029-022-00787-x  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220922 
993 |a Article 
994 |a 2022 
998 |g 137817975  |a Wienhard, Anna  |m 137817975:Wienhard, Anna  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PW137817975  |e 110100PW137817975  |e 110000PW137817975  |e 110400PW137817975  |e 700000PW137817975  |e 728500PW137817975  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 5  |y j 
999 |a KXP-PPN1817283103  |e 4190885673 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"119 S."}],"relHost":[{"disp":"Symplectic groups over noncommutative algebrasSelecta mathematica","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.12.05"],"language":["eng"],"recId":"254638821","pubHistory":["N.S. 1.1995 -"],"titleAlt":[{"title":"SM"}],"part":{"volume":"28","text":"28(2022), 4, Artikel-ID 82, Seite 1-119","extent":"119","year":"2022","issue":"4","pages":"1-119"},"title":[{"title_sort":"Selecta mathematica","subtitle":"SM","title":"Selecta mathematica"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Basel [u.a.] ; Berlin","dateIssuedDisp":"1995-","dateIssuedKey":"1995","publisher":"Birkhäuser"}],"id":{"issn":["1420-9020"],"zdb":["1462998-7"],"eki":["254638821"]}}],"origin":[{"dateIssuedDisp":"12 September 2022","dateIssuedKey":"2022"}],"id":{"doi":["10.1007/s00029-022-00787-x"],"eki":["1817283103"]},"name":{"displayForm":["Daniele Alessandrini, Arkady Berenstein, Vladimir Retakh, Eugen Rogozinnikov, Anna Wienhard"]},"note":["Gesehen am 23.09.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1817283103","title":[{"title_sort":"Symplectic groups over noncommutative algebras","title":"Symplectic groups over noncommutative algebras"}],"person":[{"roleDisplay":"VerfasserIn","display":"Alessandrini, Daniele","role":"aut","family":"Alessandrini","given":"Daniele"},{"family":"Berenstein","given":"Arkady","display":"Berenstein, Arkady","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Retakh, Vladimir","role":"aut","family":"Retakh","given":"Vladimir"},{"role":"aut","display":"Rogozinnikov, Eugen","roleDisplay":"VerfasserIn","given":"Eugen","family":"Rogozinnikov"},{"family":"Wienhard","given":"Anna","display":"Wienhard, Anna","roleDisplay":"VerfasserIn","role":"aut"}]} 
SRT |a ALESSANDRISYMPLECTIC1220