Neural network-based integration of polygenic and clinical information: development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohort

Background - In primary cardiovascular disease prevention, early identification of high-risk individuals is crucial. Genetic information allows for the stratification of genetic predispositions and lifetime risk of cardiovascular disease. However, towards clinical application, the added value over c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Steinfeldt, Jakob (VerfasserIn) , Buergel, Thore (VerfasserIn) , Loock, Lukas (VerfasserIn) , Kittner, Paul (VerfasserIn) , Ruyoga, Greg (VerfasserIn) , zu Belzen, Julius Upmeier (VerfasserIn) , Sasse, Simon (VerfasserIn) , Strangalies, Henrik (VerfasserIn) , Christmann, Lara (VerfasserIn) , Hollmann, Noah (VerfasserIn) , Wolf, Benedict (VerfasserIn) , Ference, Brian (VerfasserIn) , Deanfield, John (VerfasserIn) , Landmesser, Ulf (VerfasserIn) , Eils, Roland (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 January 2022
In: The lancet. Digital health
Year: 2022, Jahrgang: 4, Heft: 2, Pages: e84-e94
ISSN:2589-7500
DOI:10.1016/S2589-7500(21)00249-1
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S2589-7500(21)00249-1
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589750021002491
Volltext
Verfasserangaben:Jakob Steinfeldt, Thore Buergel, Lukas Loock, Paul Kittner, Greg Ruyoga, Julius Upmeier zu Belzen, Simon Sasse, Henrik Strangalies, Lara Christmann, Noah Hollmann, Benedict Wolf, Brian Ference, John Deanfield, Ulf Landmesser, Roland Eils

MARC

LEADER 00000caa a2200000 c 4500
001 181732036X
003 DE-627
005 20230427035204.0
007 cr uuu---uuuuu
008 220923s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/S2589-7500(21)00249-1  |2 doi 
035 |a (DE-627)181732036X 
035 |a (DE-599)KXP181732036X 
035 |a (OCoLC)1361696323 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Steinfeldt, Jakob  |e VerfasserIn  |0 (DE-588)1268732591  |0 (DE-627)1817323520  |4 aut 
245 1 0 |a Neural network-based integration of polygenic and clinical information  |b development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohort  |c Jakob Steinfeldt, Thore Buergel, Lukas Loock, Paul Kittner, Greg Ruyoga, Julius Upmeier zu Belzen, Simon Sasse, Henrik Strangalies, Lara Christmann, Noah Hollmann, Benedict Wolf, Brian Ference, John Deanfield, Ulf Landmesser, Roland Eils 
246 3 3 |a Neural network-based integration of polygenic and clinical information$ddevelopment and validation of a prediction model for ten-year risk of major adverse cardiac events in the UK Biobank cohort 
264 1 |c 25 January 2022 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.09.2022 
520 |a Background - In primary cardiovascular disease prevention, early identification of high-risk individuals is crucial. Genetic information allows for the stratification of genetic predispositions and lifetime risk of cardiovascular disease. However, towards clinical application, the added value over clinical predictors later in life is crucial. Currently, this genotype-phenotype relationship and implications for overall cardiovascular risk are unclear. - Methods - In this study, we developed and validated a neural network-based risk model (NeuralCVD) integrating polygenic and clinical predictors in 395 713 cardiovascular disease-free participants from the UK Biobank cohort. The primary outcome was the first record of a major adverse cardiac event (MACE) within 10 years. We compared the NeuralCVD model with both established clinical scores (SCORE, ASCVD, and QRISK3 recalibrated to the UK Biobank cohort) and a linear Cox-Model, assessing risk discrimination, net reclassification, and calibration over 22 spatially distinct recruitment centres. - Findings - The NeuralCVD score was well calibrated and improved on the best clinical baseline, QRISK3 (ΔConcordance index [C-index] 0·01, 95% CI 0·009-0·011; net reclassification improvement (NRI) 0·0488, 95% CI 0·0442-0·0534) and a Cox model (ΔC-index 0·003, 95% CI 0·002-0·004; NRI 0·0469, 95% CI 0·0429-0·0511) in risk discrimination and net reclassification. After adding polygenic scores we found further improvements on population level (ΔC-index 0·006, 95% CI 0·005-0·007; NRI 0·0116, 95% CI 0·0066-0·0159). Additionally, we identified an interaction of genetic information with the pre-existing clinical phenotype, not captured by conventional models. Additional high polygenic risk increased overall risk most in individuals with low to intermediate clinical risk, and age younger than 50 years. - Interpretation - Our results demonstrated that the NeuralCVD score can estimate cardiovascular risk trajectories for primary prevention. NeuralCVD learns the transition of predictive information from genotype to phenotype and identifies individuals with high genetic predisposition before developing a severe clinical phenotype. This finding could improve the reprioritisation of otherwise low-risk individuals with a high genetic cardiovascular predisposition for preventive interventions. - Funding - Charité-Universitätsmedizin Berlin, Einstein Foundation Berlin, and the Medical Informatics Initiative. 
700 1 |a Buergel, Thore  |e VerfasserIn  |4 aut 
700 1 |a Loock, Lukas  |e VerfasserIn  |4 aut 
700 1 |a Kittner, Paul  |e VerfasserIn  |4 aut 
700 1 |a Ruyoga, Greg  |e VerfasserIn  |4 aut 
700 1 |a zu Belzen, Julius Upmeier  |e VerfasserIn  |4 aut 
700 1 |a Sasse, Simon  |e VerfasserIn  |4 aut 
700 1 |a Strangalies, Henrik  |e VerfasserIn  |4 aut 
700 1 |a Christmann, Lara  |e VerfasserIn  |4 aut 
700 1 |a Hollmann, Noah  |e VerfasserIn  |4 aut 
700 1 |a Wolf, Benedict  |e VerfasserIn  |4 aut 
700 1 |a Ference, Brian  |e VerfasserIn  |4 aut 
700 1 |a Deanfield, John  |e VerfasserIn  |4 aut 
700 1 |a Landmesser, Ulf  |e VerfasserIn  |4 aut 
700 1 |a Eils, Roland  |d 1965-  |e VerfasserIn  |0 (DE-588)1020648287  |0 (DE-627)691291705  |0 (DE-576)361718195  |4 aut 
773 0 8 |i Enthalten in  |t The lancet. Digital health  |d London : The Lancet, 2019  |g 4(2022,2) Seiten e84-e94, 11 Seiten  |h Online-Ressource  |w (DE-627)1665782404  |w (DE-600)2972368-1  |x 2589-7500  |7 nnas  |a Neural network-based integration of polygenic and clinical information development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohort 
773 1 8 |g volume:4  |g year:2022  |g number:2  |g pages:e84-e94  |g extent:11  |a Neural network-based integration of polygenic and clinical information development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohort 
856 4 0 |u https://doi.org/10.1016/S2589-7500(21)00249-1  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589750021002491  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220923 
993 |a Article 
994 |a 2022 
998 |g 1020648287  |a Eils, Roland  |m 1020648287:Eils, Roland  |d 910000  |d 911800  |e 910000PE1020648287  |e 911800PE1020648287  |k 0/910000/  |k 1/910000/911800/  |p 15  |y j 
999 |a KXP-PPN181732036X  |e 4191050222 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"subtitle":"development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohort","title":"Neural network-based integration of polygenic and clinical information","title_sort":"Neural network-based integration of polygenic and clinical information"}],"person":[{"display":"Steinfeldt, Jakob","family":"Steinfeldt","role":"aut","given":"Jakob"},{"display":"Buergel, Thore","given":"Thore","role":"aut","family":"Buergel"},{"given":"Lukas","role":"aut","family":"Loock","display":"Loock, Lukas"},{"family":"Kittner","role":"aut","given":"Paul","display":"Kittner, Paul"},{"display":"Ruyoga, Greg","role":"aut","given":"Greg","family":"Ruyoga"},{"display":"zu Belzen, Julius Upmeier","family":"zu Belzen","role":"aut","given":"Julius Upmeier"},{"role":"aut","given":"Simon","family":"Sasse","display":"Sasse, Simon"},{"display":"Strangalies, Henrik","family":"Strangalies","role":"aut","given":"Henrik"},{"family":"Christmann","given":"Lara","role":"aut","display":"Christmann, Lara"},{"role":"aut","given":"Noah","family":"Hollmann","display":"Hollmann, Noah"},{"display":"Wolf, Benedict","family":"Wolf","role":"aut","given":"Benedict"},{"family":"Ference","role":"aut","given":"Brian","display":"Ference, Brian"},{"display":"Deanfield, John","family":"Deanfield","role":"aut","given":"John"},{"family":"Landmesser","role":"aut","given":"Ulf","display":"Landmesser, Ulf"},{"role":"aut","given":"Roland","family":"Eils","display":"Eils, Roland"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"physDesc":[{"extent":"11 S."}],"origin":[{"dateIssuedDisp":"25 January 2022","dateIssuedKey":"2022"}],"id":{"eki":["181732036X"],"doi":["10.1016/S2589-7500(21)00249-1"]},"recId":"181732036X","name":{"displayForm":["Jakob Steinfeldt, Thore Buergel, Lukas Loock, Paul Kittner, Greg Ruyoga, Julius Upmeier zu Belzen, Simon Sasse, Henrik Strangalies, Lara Christmann, Noah Hollmann, Benedict Wolf, Brian Ference, John Deanfield, Ulf Landmesser, Roland Eils"]},"note":["Gesehen am 23.09.2022"],"titleAlt":[{"title":"Neural network-based integration of polygenic and clinical information$ddevelopment and validation of a prediction model for ten-year risk of major adverse cardiac events in the UK Biobank cohort"}],"relHost":[{"id":{"zdb":["2972368-1"],"issn":["2589-7500"],"eki":["1665782404"]},"origin":[{"publisher":"The Lancet","dateIssuedDisp":"[2019]-","publisherPlace":"London"}],"part":{"issue":"2","year":"2022","volume":"4","pages":"e84-e94","text":"4(2022,2) Seiten e84-e94, 11 Seiten","extent":"11"},"recId":"1665782404","disp":"Neural network-based integration of polygenic and clinical information development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK Biobank cohortThe lancet. Digital health","title":[{"partname":"Digital health","title_sort":"lancet","title":"The lancet"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["Volume 1, issue 1 (May 2019)-"],"language":["eng"]}]} 
SRT |a STEINFELDTNEURALNETW2520